hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol. 56 No. 2, 2018.

Pregledni rad

Review of Second Generation Bioethanol Production from Residual Biomass

Katarzyna Robak ; Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology, Wolczanska 171/173, PL 90-924 Lodz, Poland
Maria Balcerek ; Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology, Wolczanska 171/173, PL 90-924 Lodz, Poland

Puni tekst: engleski, pdf (395 KB) str. 174-187 preuzimanja: 46* citiraj
APA 6th Edition
Robak, K. i Balcerek, M. (2018). Review of Second Generation Bioethanol Production from Residual Biomass. Food Technology and Biotechnology, 56 (2), 174-187.
MLA 8th Edition
Robak, Katarzyna i Maria Balcerek. "Review of Second Generation Bioethanol Production from Residual Biomass." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 174-187. Citirano 26.03.2019.
Chicago 17th Edition
Robak, Katarzyna i Maria Balcerek. "Review of Second Generation Bioethanol Production from Residual Biomass." Food Technology and Biotechnology 56, br. 2 (2018): 174-187.
Robak, K., i Balcerek, M. (2018). 'Review of Second Generation Bioethanol Production from Residual Biomass', Food Technology and Biotechnology, 56(2), str. 174-187. doi:
Robak K, Balcerek M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 26.03.2019.];56(2):174-187. doi:
K. Robak i M. Balcerek, "Review of Second Generation Bioethanol Production from Residual Biomass", Food Technology and Biotechnology, vol.56, br. 2, str. 174-187, 2018. [Online]. doi:
Puni tekst: hrvatski, pdf (395 KB) str. 174-187 preuzimanja: 98* citiraj
APA 6th Edition
Robak, K. i Balcerek, M. (2018). Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase. Food Technology and Biotechnology, 56 (2), 174-187.
MLA 8th Edition
Robak, Katarzyna i Maria Balcerek. "Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 174-187. Citirano 26.03.2019.
Chicago 17th Edition
Robak, Katarzyna i Maria Balcerek. "Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase." Food Technology and Biotechnology 56, br. 2 (2018): 174-187.
Robak, K., i Balcerek, M. (2018). 'Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase', Food Technology and Biotechnology, 56(2), str. 174-187. doi:
Robak K, Balcerek M. Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 26.03.2019.];56(2):174-187. doi:
K. Robak i M. Balcerek, "Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase", Food Technology and Biotechnology, vol.56, br. 2, str. 174-187, 2018. [Online]. doi:

Rad u XML formatu

In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller’s yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.

Ključne riječi
second generation bioethanol; biofuel; lignocellulosic biomass; biomass pretreatment; enzymatic hydrolysis; co-fermentation

Hrčak ID: 203442




Choudhary J, Singh S, Nain L. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J Biosci Bioeng. 2017;123(3):342–6. DOI: PubMed:


Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng. 2012;14(6):611–22. DOI: PubMed:


Demain AL, Newcomb M, Wu JHD. Cellulase, Clostridia, and ethanol. Microbiol Mol Biol Rev. 2005;69(1):124–54. DOI: PubMed:


Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006;103(30):11206–10. DOI: PubMed:


Pocket guide to ethanol 2017. Washington, DC, USA: Renewable Fuels Association; 2017. Available from:


Senthilkimar V, Gunasekaran P. Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges. J Sci Ind Res (India). 2005;64:845–53.


Sims REH, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresour Technol. 2010;101(6):1570–80. DOI: PubMed:


Berg C. World ethanol production and trade to 2000 and beyond. Winchester, VA, USA: The Online Distillery Network for Distilleries and Fuel Ethanol Plants Worldwide; 1999. Available from:


Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol. 2014;169:742–9. DOI: PubMed:


Balat M, Balat H, Öz C. Progress in bioethanol processing. Pror Energy Combust Sci. 2008;34(5):551–73. DOI:


Buijs NA, Siewers V, Nielsen J. Advanced biofuel production by the yeast saccharomyces cerevisiae. Curr Opin Chem Biol. 2013;17(3):480–8. DOI: PubMed:


Jambo SA, Abdulla R, Mohd Azhar SH, Marbawi H, Gansau JA, Ravindra P. A review on third generation bioethanol feedstock. Renew Sustain Energy Rev. 2016;65:756–69. DOI:


Sarris D, Papanikolaou S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng Life Sci. 2016;16(4):307–29. DOI:


Thompson W, Meyer S. Second generation biofuels and food crops: Co-products or competitors? Glob Food Secur. 2013;2(2):89–96. DOI:


Achinas S, Euverink GJW. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol. 2016;23:44–53. DOI:


Kim JH, Block DE, Mills DA. Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol. 2010;88(5):1077–85. DOI: PubMed:


Lee WC, Kuan WC. Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J. 2015;10(6):840–54. DOI: PubMed:


Chang VS, Kaar WE, Burr B, Holtzapple MT. Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol Lett. 2001;23(16):1327–33. DOI:


Hongzhang C, Liying L. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol. 2007;98(3):666–76. DOI: PubMed:


Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY, Chen ZD, et al. Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett. 1996;18(9):1013–8. DOI:


Melekwe EI, Lateef SA, Rowland G, Ekpeyong E. Bioethanol production potentials of corn cob, waste office paper and leaf of Thaumatococcus daniellii. Br J Appl Sci Technol. 2016;17(4):1–10. DOI:


Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog. 2005;21(3):816–22. DOI: PubMed:


Neves PV, Pitarelo AP, Ramos LP. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol. 2016;208:184–94. DOI: PubMed:


Frankó B, Galbe M, Wallberg O. Influence of bark on fuel ethanol production from steam-pretreated spruce. Biotechnol Biofuels. 2015;8:15. DOI: PubMed:


Stoffel RB, Neves PV, Felissia FE, Ramos LP, Gassa LM, Area MC. Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass Bioenergy. 2017;107:93–101. DOI:


Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 2002;59(6):618–28. DOI: PubMed:


Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G. Fermentation of hardwood hemicellulose hydrolysate by Pachysolen tannophilus, candida shehatae and Pichia stipitis. J Ind Microbiol. 1990;6(3):157–64. DOI:


Njoku SI, Iversen JA, Uellendahl H, Ahring BK. Production of ethanol from hemicellulose fraction of cocksfoot grass using Pichia stipitis. Sustain Chem Process. 2013;1:13. DOI:


Sasaki C, Okumura R, Asada C, Nakamura Y. Steam explosion treatment for ethanol production from branches pruned from pear trees by simultaneous saccharification and fermentation. Biosci Biotechnol Biochem. 2014;78(1):160–6. DOI: PubMed:


Wilkinson S, Smart KA, James S, Cook DJ. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. BioEnergy Res. 2017;10(1):146–57. DOI:


Kricka W, James TC, Fitzpatrick J, Bond U. Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass. Microb Cell Fact. 2015;14:61. DOI: PubMed:


Prasetyo J, Naruse K, Kato T, Boonchird C, Harashima S, Park EY. Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnol Biofuels. 2011;4:35. DOI: PubMed:


Das M, Raychaudhuri A, Ghosh SK. Supply chain of bioethanol production from whey: A review. Procedia Environ Sci. 2016;35:833–46. DOI:


Yazdani SS, Gonzalez R. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr Opin Biotechnol. 2007;18(3):213–9. DOI: PubMed:


Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol - The fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24(12):549–56. DOI: PubMed:


Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, et al. Characteristics and potential of micro algal cultivation strategies: A review. J Clean Prod. 2012;37:377–88. DOI:


Singh A, Olsen SI. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy. 2011;88(10):3548–55. DOI:


Tye YY, Lee KT, Abdullah WNW, Leh CP. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sustain Energy Rev. 2016;60:155–72. DOI:


Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96(6):673–86. DOI: PubMed:


Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Pror Energy Combust Sci. 2012;38(4):449–67. DOI:


Zabed H, Sahu JN, Boyce AN, Faruq G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew Sustain Energy Rev. 2016;66:751–74. DOI:


Ruel K, Nishiyama Y, Joseleau JP. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci. 2012;193–194:48–61. DOI: PubMed:


Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin. 2012;6(4):465–82. DOI:


Xu QS, Yan YS, Feng JX. Efficient hydrolysis of raw starch and ethanol fermentation: A novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol Biofuels. 2016;9:216. DOI: PubMed:


Peng F, Peng P, Xu F, Sun RC. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv. 2012;30(4):879–903. DOI: PubMed:


Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003;30(5):279–91. DOI: PubMed:


Cardona CA, Sánchez ÓJ. Fuel ethanol production: Process design trends and integration opportunities. Bioresour Technol. 2007;98(12):2415–57. DOI: PubMed:


Hespell RB. Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J Agric Food Chem. 1998;46(7):2615–9. DOI:


Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, et al. Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol. 2011;91(2):387–97. DOI: PubMed:


Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass - An overview. Bioresour Technol. 2016;199:76–82. DOI: PubMed:


Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46. DOI: PubMed:


Gamage J, Lam H, Zhang Z. Bioethanol production from lignocellulosic biomass, a review. J Biobased Mater Bioenergy. 2010;4(1):3–11. DOI:


Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: Improving lignin processing in the biorefinery. Science. 2014;344(6185):1246843. DOI: PubMed:


Foust TD, Aden A, Dutta A, Phillips S. An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose. 2009;16(4):547–65. DOI:


Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. The path forward for biofuels and biomaterials. Science. 2006;311(5760):484–9. DOI: PubMed:


Kang Q, Appels L, Tan T, Dewil R. Bioethanol from lignocellulosic biomass: Current findings determine research priorities. ScientificWorldJournal. 2014;2014:298153. DOI: PubMed:


Maurya DP, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 2015;5(5):597–609. DOI: PubMed:


Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Res. 2011;2011:787532. DOI: PubMed:


Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48(8):3713–29. DOI:


Alvira P, Negro MJ, Ballesteros I, González A, Ballesteros M. Steam explosion for wheat straw pretreatment for sugars production. Bioethanol. 2016;2(1):66–75. DOI:


Li J, Henriksson G, Gellerstedt G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol. 2007;98(16):3061–8. DOI: PubMed:


Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M. Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol. 2006;129-132(1-3):496–508. DOI: PubMed:


Lee JS, Parameswaran B, Lee JP, Park SC. Recent developments of key technologies on cellulosic ethanol production. J Sci Ind Res (India). 2008;67(11):865–73.


Li H, Wu M, Xu L, Hou J, Guo T, Bao X, et al. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microb Biotechnol. 2015;8(2):266–74. DOI: PubMed:


Albers E, Larsson C. A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol. 2009;36(8):1085–91. DOI: PubMed:


Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74(1):25–33. DOI:


Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: Current status. Appl Microbiol Biotechnol. 2003;63(3):258–66. DOI: PubMed:


Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR. Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind Eng Chem Res. 2002;41(24):6132–8. DOI:


Olsson L, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol. 1996;18(5):312–31. DOI:


Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering (Basel). 2017;4(2):53. DOI: PubMed:


Enari TM, Markkanen P. Production of cellulolytic enzymes by fungi. Adv Biochem Eng. 1977;5:1–24. DOI:


Alvira P, Negro MJ, Ballesteros M. Effect of endoxylanase and α-l-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol. 2011;102(6):4552–8. DOI: PubMed:


Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo M, Aranda A. A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol. 2007;114(1):83–91. DOI: PubMed:


Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol Biofuels. 2013;6:16. DOI: PubMed:


Briggs DE, Boulton CA, Brookes PA, Stevens R. Brewing: Science and practice. Cambridge, UK: Woodhead Publishing Limited; 2004. DOI:


Spencer J, Phister TG, Smart KA, Greetham D. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Res Notes. 2014;7:151. DOI: PubMed:


Parisutham V, Kim TH, Lee SK. Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production. Bioresour Technol. 2014;161:431–40. DOI: PubMed:


McIntosh S, Zhang Z, Palmer J, Wong HH, Doherty WOS, Vancov T. Pilot-scale cellulosic ethanol production using eucalyptus biomass pre-treated by dilute acid and steam explosion. Biofuels Bioprod Biorefin. 2016;10(4):346–58. DOI:


Wyman CE, Spindler DD, Grohmann K. Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy. 1992;3(5):301–7. DOI:


Kricka W, Fitzpatrick J, Bond U. Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv Appl Microbiol. 2015;92:89–125. DOI: PubMed:


Olofsson K, Bertilsson M, Lidén G. A short review on SSF - An interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7. DOI: PubMed:


Chandel AK, Gonçalves BCM, Strap JL, da Silva SS. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol. 2015;35(3):281–93. DOI: PubMed:


Dien B, Iten LB, Bothast RJ. Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3. J Ind Microbiol Biotechnol. 1999;22(6):575–81. DOI: PubMed:


Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001;56(1–2):17–34. DOI: PubMed:


Mogh Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, et al. Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep. 2017;10:52–61. DOI: PubMed:


Martins GM, Bocchini-Martins DA, Bezzerra-Bussoli C, Pagnocca FC, Boscolo M, Monteiro DA, et al. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Braz J Microbiol. 2018;49(1):162–8. DOI: PubMed:


Oreb M, Dietz H, Farwick A, Boles E. Novel strategies to improve co-fermentation of pentoses with d-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered. 2012;3(6):347–51. DOI: PubMed:


Leandro MJ, Fonseca C, Gonçalves P. Hexose and pentose transport in ascomycetous yeasts: An overview. FEMS Yeast Res. 2009;9(4):511–25. DOI: PubMed:


Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH. Second generation bioethanol production: A critical review. Renew Sustain Energy Rev. 2016;66:631–53. DOI:


Toivola A, Yarrow D, van Den Bosch E, van Dijken P, Scheffers WA. Alcoholic fermentation of d-xylose by yeasts. Appl Environ Microbiol. 1984;47(6):1221–3. PubMed:


Meinander NQ, Hahn-Hägerdal B. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: A comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol. 1997;63(5):1959–64. PubMed:


Ko JK, Um Y, Woo HM, Kim KH, Lee SM. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresour Technol. 2016;209:290–6. DOI: PubMed:


Kricka W, Fitzpatrick J, Bond U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: A perspective. Front Microbiol. 2014;5:174. DOI: PubMed:


Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA. 2011;108(2):504–9. DOI: PubMed:


Madson PW, Lococo DB. Recovery of volatile products from dilute high-fouling process streams. Appl Biochem Biotechnol. 2000;84–86:1049–61. DOI: PubMed:


Bioethanol. Zeitz, Germany: CropEnergies AG. Available from:


Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol. 2010;101(13):4851–61. DOI: PubMed:


Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv. 1997;15(3–4):583–620. DOI: PubMed:


Arantes V, Saddler JN. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels. 2011;4:3. DOI: PubMed:


Zaldivar J, Borges A, Johansson B, Smits H, Villas-Bôas S, Nielsen J, et al. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2002;59(4–5):436–42. DOI: PubMed:


Philippidis GP, Hatzis C. Biochemical engineering analysis of critical process factors in the biomass-to-ethanol technology. Biotechnol Prog. 1997;13(3):222–31. DOI: PubMed:


Posjeta: 205 *