hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Izvorni znanstveni članak
https://doi.org/10.17113/ftb.56.02.18.5390

Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production

Joanna Berlowska ; Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, PL-90-924 Lodz, Poland
Weronika Cieciura-Włoch ; Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, PL-90-924 Lodz, Poland
Halina Kalinowska ; Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, PL-90-924 Lodz, Poland
Dorota Kregiel ; Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, PL-90-924 Lodz, Poland
Sebastian Borowski ; Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, PL-90-924 Lodz, Poland
Ewelina Pawlikowska ; Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, PL-90-924 Lodz, Poland
Michał Binczarski ; Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, PL-90-924 Lodz, Poland
Izabela Witonska ; Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, PL-90-924 Lodz, Poland

Puni tekst: engleski, pdf (345 KB) str. 188-196 preuzimanja: 20* citiraj
APA 6th Edition
Berlowska, J., Cieciura-Włoch, W., Kalinowska, H., Kregiel, D., Borowski, S., Pawlikowska, E., ... Witonska, I. (2018). Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production. Food Technology and Biotechnology, 56 (2), 188-196. https://doi.org/10.17113/ftb.56.02.18.5390
MLA 8th Edition
Berlowska, Joanna, et al. "Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 188-196. https://doi.org/10.17113/ftb.56.02.18.5390. Citirano 24.09.2018.
Chicago 17th Edition
Berlowska, Joanna, Weronika Cieciura-Włoch, Halina Kalinowska, Dorota Kregiel, Sebastian Borowski, Ewelina Pawlikowska, Michał Binczarski i Izabela Witonska. "Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production." Food Technology and Biotechnology 56, br. 2 (2018): 188-196. https://doi.org/10.17113/ftb.56.02.18.5390
Harvard
Berlowska, J., et al. (2018). 'Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production', Food Technology and Biotechnology, 56(2), str. 188-196. doi: https://doi.org/10.17113/ftb.56.02.18.5390
Vancouver
Berlowska J, Cieciura-Włoch W, Kalinowska H, Kregiel D, Borowski S, Pawlikowska E i sur. Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production. Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):188-196. doi: https://doi.org/10.17113/ftb.56.02.18.5390
IEEE
J. Berlowska, et al., "Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production", Food Technology and Biotechnology, vol.56, br. 2, str. 188-196, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5390
Puni tekst: hrvatski, pdf (345 KB) str. 188-196 preuzimanja: 10* citiraj
APA 6th Edition
Berlowska, J., Cieciura-Włoch, W., Kalinowska, H., Kregiel, D., Borowski, S., Pawlikowska, E., ... Witonska, I. (2018). Ispitivanje enzimske razgradnje pulpe šećerne trske za proizvodnju mliječne kiseline usporedbom metode istodobne saharifikacije i fermentacije s tehnikom odvojene hidrolize i fermentacije. Food Technology and Biotechnology, 56 (2), 188-196. https://doi.org/10.17113/ftb.56.02.18.5390
MLA 8th Edition
Berlowska, Joanna, et al. "Ispitivanje enzimske razgradnje pulpe šećerne trske za proizvodnju mliječne kiseline usporedbom metode istodobne saharifikacije i fermentacije s tehnikom odvojene hidrolize i fermentacije." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 188-196. https://doi.org/10.17113/ftb.56.02.18.5390. Citirano 24.09.2018.
Chicago 17th Edition
Berlowska, Joanna, Weronika Cieciura-Włoch, Halina Kalinowska, Dorota Kregiel, Sebastian Borowski, Ewelina Pawlikowska, Michał Binczarski i Izabela Witonska. "Ispitivanje enzimske razgradnje pulpe šećerne trske za proizvodnju mliječne kiseline usporedbom metode istodobne saharifikacije i fermentacije s tehnikom odvojene hidrolize i fermentacije." Food Technology and Biotechnology 56, br. 2 (2018): 188-196. https://doi.org/10.17113/ftb.56.02.18.5390
Harvard
Berlowska, J., et al. (2018). 'Ispitivanje enzimske razgradnje pulpe šećerne trske za proizvodnju mliječne kiseline usporedbom metode istodobne saharifikacije i fermentacije s tehnikom odvojene hidrolize i fermentacije', Food Technology and Biotechnology, 56(2), str. 188-196. doi: https://doi.org/10.17113/ftb.56.02.18.5390
Vancouver
Berlowska J, Cieciura-Włoch W, Kalinowska H, Kregiel D, Borowski S, Pawlikowska E i sur. Ispitivanje enzimske razgradnje pulpe šećerne trske za proizvodnju mliječne kiseline usporedbom metode istodobne saharifikacije i fermentacije s tehnikom odvojene hidrolize i fermentacije. Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):188-196. doi: https://doi.org/10.17113/ftb.56.02.18.5390
IEEE
J. Berlowska, et al., "Ispitivanje enzimske razgradnje pulpe šećerne trske za proizvodnju mliječne kiseline usporedbom metode istodobne saharifikacije i fermentacije s tehnikom odvojene hidrolize i fermentacije", Food Technology and Biotechnology, vol.56, br. 2, str. 188-196, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5390

Rad u XML formatu

Sažetak
This study compares the efficiency of lactic acid production by separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) of sugar beet pulp, a byproduct of industrial sugar production. In experiments, sugar beet pulp was hydrolyzed using five commercial enzymes. A series of shake flask fermentations were conducted using five selected strains of lactic acid bacteria (LAB). The differences in the activities of the enzymes for degrading the principal sugar beet pulp components were reflected in the different yields of total reducing sugars. The highest yields after hydrolysis and the lowest quantities of insoluble residues were obtained using a mixture (1:1) of Viscozyme® and Ultraflo® Max. In the SHF process, only a portion of the soluble sugars released by the enzymes from the sugar beet pulp was assimilated by the LAB strains. In SSF, low enzyme loads led to reduction in the efficiency of sugar accumulation. The risk of carbon catabolic repression was reduced. Our results suggest that SSF has advantages over SHF, including lower processing costs and higher productivity. Lactic acid yield in SSF mode (approx. 30 g/L) was 80–90 % higher than that in SHF.

Ključne riječi
sugar beet pulp; enzymatic hydrolysis; lactic acid

Projekti
National Centre for Research and Development of Poland / PBS1/A8/13/2012 - -

Hrčak ID: 203443

URI
https://hrcak.srce.hr/203443

Reference

1 

Öhgren K, Bura R, Lesnicki G, Saddler J, Zacchi G. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem. 2007;42:834–9. DOI: http://dx.doi.org/10.1016/j.procbio.2007.02.003

2 

Ziemiński K, Romanowska I, Kowalska-Wentel M, Cyran M. Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresour Technol. 2014;166:187–93. DOI: http://dx.doi.org/10.1016/j.biortech.2014.05.021 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24907578

3 

Hamley-Bennett C, Lye GJ, Leak DJ. Selective fractionation of sugar beet pulp for release of fermentation and chemical feedstocks; optimisation of thermo-chemical pre-treatment. Bioresour Technol. 2016;209:259–64. DOI: http://dx.doi.org/10.1016/j.biortech.2016.02.131 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26978325

4 

Sivapragasam N, Thavarajah P, Ohm JB, Thavarajah D. Enzyme resistant carbohydrate based micro-scale materials from sugar beet (Beta vulgaris L.) pulp for food and pharmaceutical applications. Bioact Carbohydr Dietary Fibre. 2014;3:115–21. DOI: http://dx.doi.org/10.1016/j.bcdf.2014.03.004

5 

Berłowska J, Binczarski M, Dudkiewicz M, Kalinowska H, Witonska IA, Stanishevsky AV. A low-cost method for obtaining high-value bio-based propylene glycol from sugar beet pulp. RSC Advances. 2015;5:2299–304. DOI: http://dx.doi.org/10.1039/C4RA12839G

6 

Patelski P, Berłowska J, Dziugan P, Pielech-Przybylska K, Balcerek M, Dziekonska U, et al. Utilization of sugar beet bagasse for the biosynthesis of yeast SCP. J Food Eng. 2015;167:32–7. DOI: http://dx.doi.org/10.1016/j.jfoodeng.2015.03.031

7 

Binczarski M, Berłowska J, Stanishevsky A, Witonska I. Biologically synthesized crude calcium lactate as a substrate for propylene glycol production. RSC Advances. 2016;6(95):92420–7. DOI: http://dx.doi.org/10.1039/C6RA20722G

8 

Berłowska J, Cieciura W, Borowski S, Dudkiewicz M, Binczarski M, Witonska I, et al. Simultaneous saccharification and fermentation of sugar beet pulp with mixed bacterial cultures for lactic acid and propylene glycol production. Molecules. 2016;21(10):1380. DOI: http://dx.doi.org/10.3390/molecules21101380 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27763527

9 

Hu J, Lin Y, Zhang Z, Xiang T, Mei Y, Zhao S, et al. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Bioresour Technol. 2016;214:74–80. DOI: http://dx.doi.org/10.1016/j.biortech.2016.04.034 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27128191

10 

Sasaki C, Kushiki Y, Asada N, Nakamura Y. Acetone–butanol–ethanol production by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) methods using a corns and wood chips of Quercus acutissima as a carbon source. Ind Crops Prod. 2014;16:286–92. DOI: http://dx.doi.org/10.1016/j.indcrop.2014.08.049

11 

Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttilä M, Lidén G, et al. Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem. 2012;47(10):1452–9. DOI: http://dx.doi.org/10.1016/j.procbio.2012.05.016

12 

Olofsson K, Bertilsson M, Lidén G. A short review on SSF – An interesting process option for ethanol production from lignocellulossic feedstocks. Biotechnol Biofuels. 2008;1:1–7. DOI: http://dx.doi.org/10.1186/1754-6834-1-7 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18471273

13 

Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol. 2010;101:4851–61. DOI: http://dx.doi.org/10.1016/j.biortech.2009.11.093 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20042329

14 

Stenberg K, Galbe M, Zacchi G. The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol. Enzyme Microb Technol. 2000;26:71–9. DOI: http://dx.doi.org/10.1016/S0141-0229(99)00127-1

15 

Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. J Biotechnol. 2011;156:286–301. DOI: http://dx.doi.org/10.1016/j.jbiotec.2011.06.017 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21729724

16 

Dahnum D, Tasum SO, Triwahyuni E, Nurdin M, Abimanyu H. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia. 2015;68:107–16. DOI: http://dx.doi.org/10.1016/j.egypro.2015.03.238

17 

Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8. DOI: http://dx.doi.org/10.1021/ac60147a030

18 

May RA, Stevenson KJ. Software review of Origin 8. J Am Chem Soc. 2009;131(2):872. DOI: http://dx.doi.org/10.1021/ja809638x

19 

Wang Y, Tashiro Y, Sonomoto K. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. J Biosci Bioeng. 2015;119:10–8. DOI: http://dx.doi.org/10.1016/j.jbiosc.2014.06.003 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25077706

20 

Micard V, Renard CMGC, Thibault JF. Enzymatic saccharification of sugar beet pulp. Enzyme Microb Technol. 1996;19:162–70. DOI: http://dx.doi.org/10.1016/0141-0229(95)00224-3

21 

Micard V, Renard CMGC, Thibault JF. Influence of pretreatments on enzymic degradation of a cellulose-rich residue from sugar-beet pulp. Lebensm Wiss Technol. 1997;30:284–91. DOI: http://dx.doi.org/10.1006/fstl.1996.0182

22 

Zheng Y, Cheng YS, Chaowei Y, Zhang R, Jenkins BM, Vander Gheynst JS. Improving the efficiency of enzyme utilization for sugar beet pulp hydrolysis. Bioprocess Biosyst Eng. 2012;35:1531–9. DOI: http://dx.doi.org/10.1007/s00449-012-0743-z PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22580744

23 

Foster BL, Dale BE, Doran-Peterson JB. Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl Biochem Biotechnol. 2001;91:269–82. DOI: http://dx.doi.org/10.1385/ABAB:91-93:1-9:269 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11963856

24 

Ziemiński K, Kowalska-Wentel M. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresour Technol. 2015;180:274–80. DOI: http://dx.doi.org/10.1016/j.biortech.2014.12.035 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25618496

25 

Rezić T, Oros D, Marković I, Kracher D, Ludwig R, Šantek B. Integrated hydrolyzation and fermentation of sugar beet pulp to bioethanol. J Microbiol Biotechnol. 2013;23(9):1244–52. DOI: http://dx.doi.org/10.4014/jmb.1210.10013 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23851274

26 

Paschos T, Xiros C, Christakopoulos P. Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Ind Crops Prod. 2015;76:793–802. DOI: http://dx.doi.org/10.1016/j.indcrop.2015.07.061

27 

Saha BC, Nichols NN, Qureshi N, Cotta MA. Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol. 2011;92:865–74. DOI: http://dx.doi.org/10.1007/s00253-011-3600-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21968655

28 

Kravtchenko TP, Arnould I, Voragen AGJ, Pilnik W. Improvement of the selective depolymerization of pectic substances by chemical β-elimination in aqueous solution. Carbohydr Polym. 1992;19:237–42. DOI: http://dx.doi.org/10.1016/0144-8617(92)90075-2

29 

Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 2008;11:87–93. DOI: http://dx.doi.org/10.1016/j.mib.2008.02.007 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18359269

30 

Ishola MM, Branbdberg T, Taherzadeh MJ. Simultaneous glucose and xylose utilization for improved ethanol production from lignocellulosic biomass through SSF with encapsulated yeast. Biomass Bioenergy. 2015;77:192–9. DOI: http://dx.doi.org/10.1016/j.biombioe.2015.03.021

31 

Ishola MM, Ylitervo P, Taherzadeh MJ. Co-utilization of glucose and xylose for enhanced lignocellulosic ethanol production with reverse membrane bioreactors. Membranes. 2015;5(4):844–56. DOI: http://dx.doi.org/10.3390/membranes5040844 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26633530

32 

Iorizzo M, Lombardi SJ, Macciola V, Testa B, Lustrato G, Lopez F, et al. Technological potential of Lactobacillus strains isolated from fermented green olives: In vitro studies with emphasis on oleuropein-degrading capability. Sci World J. 2016;2016:1917592. DOI: http://dx.doi.org/10.1155/2016/1917592 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27446986

33 

Berłowska J, Pielech-Przybylska K, Balcerek M, Dziekońska-Kubczak U, Patelski P, Dziugan P, et al. Simultaneous saccharification and fermentation of sugar beet pulp for efficient bioethanol production. BioMed Res Int. 2016;2016:3154929. DOI: http://dx.doi.org/10.1155/2016/3154929 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27722169

34 

Nguyen CM, Choi GJ, Choi YH, Jang KS, Kim JC. D- and L-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochem Eng J. 2013;81:40–6. DOI: http://dx.doi.org/10.1016/j.bej.2013.10.003

35 

Cui F, Li Y, Wan C. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol. 2011;102:1831–6. DOI: http://dx.doi.org/10.1016/j.biortech.2010.09.063 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20943382

36 

Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv. 2013;31:877–902. DOI: http://dx.doi.org/10.1016/j.biotechadv.2013.04.002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23624242

37 

Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M. Production of D–lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol. 2006;97:211–7. DOI: http://dx.doi.org/10.1016/j.biortech.2005.02.025 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16171677

38 

Yáñez R, Alonso JL, Parajó JC. d-Lactic acid production from waste cardboard. J Chem Technol Biotechnol. 2005;80:76–84. DOI: http://dx.doi.org/10.1002/jctb.1160

39 

Liu ZH, Qin L, Zhu JQ, Li BZ, Yuan YJ. Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels. 2014;7:167. DOI: http://dx.doi.org/10.1186/s13068-014-0167-x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25516770

40 

Rana V, Eckard AD, Ahring BK. Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. Springerplus. 2014;3:516. DOI: http://dx.doi.org/10.1186/2193-1801-3-516 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25279308

41 

Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng. 2008;100(6):1122–31. DOI: http://dx.doi.org/10.1002/bit.21849 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18383076

42 

Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol. 2000;25:184–92. DOI: http://dx.doi.org/10.1038/sj.jim.7000054

43 

Berłowska J, Pielech-Przybylska K, Balcerek M, Cieciura W, Borowski S, Kręgiel D. Integrated bioethanol fermentation/anaerobic digestion for valorization of sugar beet pulp. Energies. 2017;10:1255. DOI: http://dx.doi.org/10.3390/en10091255

[hrvatski]

Posjeta: 48 *