hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Izvorni znanstveni članak
https://doi.org/10.17113/ftb.56.02.18.5582

Svojstva i fermentacijska aktivnost industrijskih kvasaca Saccharomyces cerevisiae, S. uvarum, Candida utilis i Kluyveromyces marxianus izloženih mikotoksinima AFB1, OTA i ZEA

Željko Jakopović   ORCID icon orcid.org/0000-0001-6448-484X ; Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Karla Hanousek Čiča ; Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Jasna Mrvčić ; Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Irina Pucić ; Department of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
Iva Čanak ; Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Jadranka Frece ; Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Jelka Pleadin ; Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska cesta 143, HR-10000 Zagreb, Croatia
Damir Stanzer ; Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Slaven Zjalić ; Department of Ecology, Agronomy and Aquaculture, University of Zadar, M. Pavlinovića 1, HR-23000 Zadar, Croatia
Ksenija Markov ; Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia

Puni tekst: hrvatski, pdf (542 KB) str. 208-217 preuzimanja: 15* citiraj
APA 6th Edition
Jakopović, Ž., Hanousek Čiča, K., Mrvčić, J., Pucić, I., Čanak, I., Frece, J., ... Markov, K. (2018). Svojstva i fermentacijska aktivnost industrijskih kvasaca Saccharomyces cerevisiae, S. uvarum, Candida utilis i Kluyveromyces marxianus izloženih mikotoksinima AFB1, OTA i ZEA. Food Technology and Biotechnology, 56 (2), 208-217. https://doi.org/10.17113/ftb.56.02.18.5582
MLA 8th Edition
Jakopović, Željko, et al. "Svojstva i fermentacijska aktivnost industrijskih kvasaca Saccharomyces cerevisiae, S. uvarum, Candida utilis i Kluyveromyces marxianus izloženih mikotoksinima AFB1, OTA i ZEA." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 208-217. https://doi.org/10.17113/ftb.56.02.18.5582. Citirano 21.11.2018.
Chicago 17th Edition
Jakopović, Željko, Karla Hanousek Čiča, Jasna Mrvčić, Irina Pucić, Iva Čanak, Jadranka Frece, Jelka Pleadin, Damir Stanzer, Slaven Zjalić i Ksenija Markov. "Svojstva i fermentacijska aktivnost industrijskih kvasaca Saccharomyces cerevisiae, S. uvarum, Candida utilis i Kluyveromyces marxianus izloženih mikotoksinima AFB1, OTA i ZEA." Food Technology and Biotechnology 56, br. 2 (2018): 208-217. https://doi.org/10.17113/ftb.56.02.18.5582
Harvard
Jakopović, Ž., et al. (2018). 'Svojstva i fermentacijska aktivnost industrijskih kvasaca Saccharomyces cerevisiae, S. uvarum, Candida utilis i Kluyveromyces marxianus izloženih mikotoksinima AFB1, OTA i ZEA', Food Technology and Biotechnology, 56(2), str. 208-217. doi: https://doi.org/10.17113/ftb.56.02.18.5582
Vancouver
Jakopović Ž, Hanousek Čiča K, Mrvčić J, Pucić I, Čanak I, Frece J i sur. Svojstva i fermentacijska aktivnost industrijskih kvasaca Saccharomyces cerevisiae, S. uvarum, Candida utilis i Kluyveromyces marxianus izloženih mikotoksinima AFB1, OTA i ZEA. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 21.11.2018.];56(2):208-217. doi: https://doi.org/10.17113/ftb.56.02.18.5582
IEEE
Ž. Jakopović, et al., "Svojstva i fermentacijska aktivnost industrijskih kvasaca Saccharomyces cerevisiae, S. uvarum, Candida utilis i Kluyveromyces marxianus izloženih mikotoksinima AFB1, OTA i ZEA", Food Technology and Biotechnology, vol.56, br. 2, str. 208-217, 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5582
Puni tekst: engleski, pdf (542 KB) str. 208-217 preuzimanja: 28* citiraj
APA 6th Edition
Jakopović, Ž., Hanousek Čiča, K., Mrvčić, J., Pucić, I., Čanak, I., Frece, J., ... Markov, K. (2018). Properties and Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus Exposed to AFB1, OTA and ZEA. Food Technology and Biotechnology, 56 (2), 208-217. https://doi.org/10.17113/ftb.56.02.18.5582
MLA 8th Edition
Jakopović, Željko, et al. "Properties and Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus Exposed to AFB1, OTA and ZEA." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 208-217. https://doi.org/10.17113/ftb.56.02.18.5582. Citirano 21.11.2018.
Chicago 17th Edition
Jakopović, Željko, Karla Hanousek Čiča, Jasna Mrvčić, Irina Pucić, Iva Čanak, Jadranka Frece, Jelka Pleadin, Damir Stanzer, Slaven Zjalić i Ksenija Markov. "Properties and Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus Exposed to AFB1, OTA and ZEA." Food Technology and Biotechnology 56, br. 2 (2018): 208-217. https://doi.org/10.17113/ftb.56.02.18.5582
Harvard
Jakopović, Ž., et al. (2018). 'Properties and Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus Exposed to AFB1, OTA and ZEA', Food Technology and Biotechnology, 56(2), str. 208-217. doi: https://doi.org/10.17113/ftb.56.02.18.5582
Vancouver
Jakopović Ž, Hanousek Čiča K, Mrvčić J, Pucić I, Čanak I, Frece J i sur. Properties and Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus Exposed to AFB1, OTA and ZEA. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 21.11.2018.];56(2):208-217. doi: https://doi.org/10.17113/ftb.56.02.18.5582
IEEE
Ž. Jakopović, et al., "Properties and Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus Exposed to AFB1, OTA and ZEA", Food Technology and Biotechnology, vol.56, br. 2, str. 208-217, 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5582

Rad u XML formatu

Sažetak
U radu je ispitan učinak aflatoksina B1, okratoksina A i zearalenona na morfologiju, parametre rasta i metaboličku aktivnost kvasaca Saccharomyces cerevisiae, Saccharomyces uvarum, Candida utilis i Kluyveromyces marxianus. Rezultati pokazuju da su tri mikotoksina utjecala na morfologiju svih kvasaca, prvenstveno na promjer stanica, ali ne i na njihov konačni broj. Fourierova transformacija infracrvene spektroskopije pokazala je da su membrane kvasaca vezale mikotoksine, naročito C. utilis. Kod većine kvasaca, osim kvasca S. uvarum izloženog okratoksinu A i zearaenonu, došlo je do denaturacije staničnih membrana. U ranoj su fazi fermentacije svi kvasci izloženi mikotoksinima imali nižu metaboličku aktivnost i sporiji rast biomase u usporedbi s kontrolom, no koncentracije produkata fermentacije i biomase dosegnule su razinu kontrolnih uzoraka do završetka fermentacije, osim u slučaju C. utilis izloženog 20 µg/mL zearalenona. Adaptivni odgovor mikotoksina upućuje na zaključak da se određeni kvasci mogu koristiti za kontrolu koncentracije mikotoksina u proizvodnji fermentirane hrane i pića.

Ključne riječi
mikotoksini; kvasci; rast kvasaca; morfologija kvasaca; fermentacija; FTIR

Hrčak ID: 203488

URI
https://hrcak.srce.hr/203488

Reference

1 

Majara M, O’Connor-Cox ESC, Axcell BC. Trehalose – A stress protectant and stress indicator compound for yeast exposed to adverse conditions. J Am Soc Brew Chem. 1996;54(4):221–7. DOI: http://dx.doi.org/10.1094/ASBCJ-54-0221

2 

Bleoanca I, Bahrim GE. Overview on brewing yeast stress factors. Rom Biotechnol Lett. 2013;18(5):8559–72.

3 

Foszczyńska B, Dziuba E, Chmielewska J, Kawa-Rygielska J. Effect of DAS, ZEA and OTA mycotoxins on the fermentation activity of brewing yeast. EJPAU. 2008;11(1):Article no. 09.

4 

Bauer EF, Pretorius LS. Yeast stress response and fermentation efficiency: How to survive the making of wine - A review. S Afr J Enol Vitic. 2000;21:27–51.

5 

Dziuba E, Foszczyńska B, Stempniewicz R. Effect of mycotoxins DAS, ZEA and OTA on the growth of brewing yeast. Pol J Food Nutr Sci. 2007;57 4A:123–9.

6 

Foszczyńska B, Dziuba E. Physiological status of brewing yeast during fermentation of worts contaminated with mycotoxins. P.1: T-2 and ZEA. Acta Sci Pol Biotechnol. 2007;6(1):3–12.

7 

Foszczyńska B, Dziuba E. Physiological status of brewing yeast during fermentation of worts contaminated with mycotoxins. P.2: DAS and OTA. Acta Sci Pol Biotechnol. 2007;6(2):25–34.

8 

Kłosowski G, Mikulski D, Grajewski J, Błajet-Kosicka A. The influence of raw material contamination with mycotoxins on alcoholic fermentation indicators. Bioresour Technol. 2010;101(9):3147–52. DOI: http://dx.doi.org/10.1016/j.biortech.2009.12.040 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20074946

9 

Štyriak I, Conková E, Kmec V, Böhm J, Razzazi E. The use of yeast for microbial degradation of some selected mycotoxins. Mycotoxin Res. 2001;17 Suppl. 1:24–7. DOI: http://dx.doi.org/10.1007/BF03036705 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23605753

10 

Bejaoui H, Mathieu F, Taillandier P, Lebrihi A. Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. J Appl Microbiol. 2004;97(5):1038–44. DOI: http://dx.doi.org/10.1111/j.1365-2672.2004.02385.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15479420

11 

Shetty PH, Jespersen L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci Technol. 2006;17(2):48–55. DOI: http://dx.doi.org/10.1016/j.tifs.2005.10.004

12 

Shetty PH, Hald B, Jespersen L. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int J Food Microbiol. 2007;113(1):41–6. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2006.07.013 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16996157

13 

Patharajan S, Reddy KRN, Karthikeyan V, Spadaro D, Lore A, Gullino ML, et al. Potential of yeast antagonists on in vitro biodegradation of ochratoxin A. Food Control. 2011;22(2):290–6. DOI: http://dx.doi.org/10.1016/j.foodcont.2010.07.024

14 

Reddy KRN, Farhana NI, Salleh B, Oliveira CAF. Microbiological control of mycotoxins: Present status and future concerns. In: Méndez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Microbiology book series, vol.2 (2). Badajoz, Spain: Formatex Research Center; 2010. pp. 1078–86.

15 

Piotrowska M, Masek A. Saccharomyces cerevisiae cell wall components as tools for ochratoxin A decontamination. Toxins (Basel). 2015;7(4):1151–62. DOI: http://dx.doi.org/10.3390/toxins7041151 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25848694

16 

Pfliegler WP, Pusztahelyi T, Pócsi I. Mycotoxins – Prevention and decontamination by yeasts. J Basic Microbiol. 2015;55(7):805–18. DOI: http://dx.doi.org/10.1002/jobm.201400833 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25682759

17 

Kłosowski G, Mikulski D. The effect of raw material contamination with mycotoxins on the composition of alcoholic fermentation volatile by-products in raw spirits. Bioresour Technol. 2010;101(24):9723–7. DOI: http://dx.doi.org/10.1016/j.biortech.2010.07.085 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20709541

18 

Boeira LS, Bryce JH, Steward GG, Flannigan B. Inhibitory effect of Fusarium mycotoxins on growth of brewing yeasts. 1 Zearalenone and fumonisin B1. J Inst Brew. 1999;105(6):366–75. DOI: http://dx.doi.org/10.1002/j.2050-0416.1999.tb00027.x

19 

Boeira LS, Bryce JH, Stewart GG, Flannigan B. Inhibitory effect of Fusarium mycotoxins on growth of brewing yeast. 2. Deoxynivalenol and nivalenol. J Inst Brew. 1999;105(6):376–81. DOI: http://dx.doi.org/10.1002/j.2050-0416.1999.tb00028.x

20 

Boeira LS, Bryce JH, Stewart GG, Flannigan B. The effect of combinations of Fusarium mycotoxins (deoxynivalenol, zearalenone and fumonisin B1) on growth of brewing yeasts. J Appl Microbiol. 2000;88(3):388–403. DOI: http://dx.doi.org/10.1046/j.1365-2672.2000.00972.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/10747219

21 

Reiss J. Influence of the mycotoxins aflatoxin B1, rubratoxin B, patulin and diacetoxyscirpenol on the fermentation activity of baker’s yeast. Mycopathol Mycol Appl. 1973;51(4):337–45. DOI: http://dx.doi.org/10.1007/BF02057804 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/4588494

22 

Reiss J. Influence of Fusarium and Myrothecium mycotoxins on dehydrogenase activity of Saccharomyces cerevisiae. Mycopathologia. 1983;81(3):187–9. DOI: http://dx.doi.org/10.1007/BF00436826 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/6225024

23 

Opus, v. 5.0, Bruker, Leiderdorp, The Netherlands; 2002. Available from: https://www.bruker.com.

24 

Lefebvre D, Gabriel V, Vayssier Y, Fontagné-Faucher C. Simultaneous HPLC determination of sugars, organic acids and ethanol in sourdough process. Lebensm Wiss Technol. 2002;35(5):407–14. DOI: http://dx.doi.org/10.1006/fstl.2001.0859

25 

STATISTICA, v. 7.1, StatSoft, Inc, Tulsa, OK, USA; 2005. Available from: http://www.statsoft.com.

26 

Engler KH, Coker RD, Evans IH. Uptake of aflatoxin B1 and T-2 toxin by two mycotoxin bioassay microorganisms: Kluyveromyces marxianus and Bacillus megaterium. Arch Microbiol. 2000;174(6):381–5. DOI: http://dx.doi.org/10.1007/s002030000215 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11195092

27 

Boeira LS, Bryce JH, Stewart GG, Flannigan B. Influence of cultural conditions on sensitivity of brewing yeast growth to Fusarium mycotoxins zearalenone, deoxynivalenol and fumonisin B1. Int Biodeterior Biodegradation. 2002;50(2):69–81. DOI: http://dx.doi.org/10.1016/S0964-8305(02)00070-7

28 

Joannis-Cassan C, Tozlovanu M, Hadjeba-Medjdoub K, Ballet N, Pfohl-Leszkowicz A. Binding of zearalenone, aflatoxin B, and ochratoxin A by yeast-based products: A method for quantification of adsorption performance. J Food Prot. 2011;74(7):1175–85. DOI: http://dx.doi.org/10.4315/0362-028X.JFP-11-023 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21740721

29 

Jouany JP, Yiannikouris A, Bertin G. The chemical bonds between mycotoxins and cell wall components of Saccharomyces cerevisiae have been identified. Arch Zootech. 2005;8:26–50.

30 

Turner JJ, Ewald JC, Skotheim JM. Cell size control in yeast. Curr Biol. 2012;22(9):R350–9. DOI: http://dx.doi.org/10.1016/j.cub.2012.02.041 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22575477

31 

Holubářová A, Müller P, Svoboda A. A response of yeast cells to heat stress: Cell viability and the stability of cytoskeletal structures. Scr Med (Brno). 2000;73(6):381–92.

32 

Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell. 2008;19(1):352–67. DOI: http://dx.doi.org/10.1091/mbc.e07-08-0779 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17959824

33 

Hatab S, Yue T, Mohamad O. Removal of patulin from apple juice using inactivated lactic acid bacteria. J Appl Microbiol. 2012;112(5):892–9. DOI: http://dx.doi.org/10.1111/j.1365-2672.2012.05279.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22394257

34 

Ianiri G, Idnurm A, Wright SAI, Durán-Patrón R, Mannina L, Ferracane R, et al. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol. 2013;79(9):3101–15. DOI: http://dx.doi.org/10.1128/AEM.03851-12 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23455346

[engleski]

Posjeta: 76 *