hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Prethodno priopćenje
https://doi.org/10.17113/ftb.56.02.18.5450

Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate

Burcu Çabuk ; Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
Matthew G. Nosworthy ; Department of Human Nutritional Sciences, Department of Food Science, Department of Animal Science, Canadian Centre for Agri-Food Research in Health and Medicine, Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg,
Andrea K. Stone ; Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
Darren R. Korber ; Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
Takuji Tanaka ; Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
James D. House ; Department of Human Nutritional Sciences, Department of Food Science, Department of Animal Science, Canadian Centre for Agri-Food Research in Health and Medicine, Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg,
Michael T. Nickerson ; Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada

Puni tekst: engleski, pdf (221 KB) str. 257-264 preuzimanja: 25* citiraj
APA 6th Edition
Çabuk, B., Nosworthy, M.G., Stone, A.K., Korber, D.R., Tanaka, T., House, J.D. i Nickerson, M.T. (2018). Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technology and Biotechnology, 56 (2), 257-264. https://doi.org/10.17113/ftb.56.02.18.5450
MLA 8th Edition
Çabuk, Burcu, et al. "Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 257-264. https://doi.org/10.17113/ftb.56.02.18.5450. Citirano 21.11.2018.
Chicago 17th Edition
Çabuk, Burcu, Matthew G. Nosworthy, Andrea K. Stone, Darren R. Korber, Takuji Tanaka, James D. House i Michael T. Nickerson. "Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate." Food Technology and Biotechnology 56, br. 2 (2018): 257-264. https://doi.org/10.17113/ftb.56.02.18.5450
Harvard
Çabuk, B., et al. (2018). 'Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate', Food Technology and Biotechnology, 56(2), str. 257-264. doi: https://doi.org/10.17113/ftb.56.02.18.5450
Vancouver
Çabuk B, Nosworthy MG, Stone AK, Korber DR, Tanaka T, House JD i sur. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 21.11.2018.];56(2):257-264. doi: https://doi.org/10.17113/ftb.56.02.18.5450
IEEE
B. Çabuk, et al., "Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate", Food Technology and Biotechnology, vol.56, br. 2, str. 257-264, 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5450
Puni tekst: hrvatski, pdf (221 KB) str. 257-264 preuzimanja: 26* citiraj
APA 6th Edition
Çabuk, B., Nosworthy, M.G., Stone, A.K., Korber, D.R., Tanaka, T., House, J.D. i Nickerson, M.T. (2018). Utjecaj fermentacije na probavljivost proteina i udjel nenutritivnih sastojaka u koncentratu proteina graška. Food Technology and Biotechnology, 56 (2), 257-264. https://doi.org/10.17113/ftb.56.02.18.5450
MLA 8th Edition
Çabuk, Burcu, et al. "Utjecaj fermentacije na probavljivost proteina i udjel nenutritivnih sastojaka u koncentratu proteina graška." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 257-264. https://doi.org/10.17113/ftb.56.02.18.5450. Citirano 21.11.2018.
Chicago 17th Edition
Çabuk, Burcu, Matthew G. Nosworthy, Andrea K. Stone, Darren R. Korber, Takuji Tanaka, James D. House i Michael T. Nickerson. "Utjecaj fermentacije na probavljivost proteina i udjel nenutritivnih sastojaka u koncentratu proteina graška." Food Technology and Biotechnology 56, br. 2 (2018): 257-264. https://doi.org/10.17113/ftb.56.02.18.5450
Harvard
Çabuk, B., et al. (2018). 'Utjecaj fermentacije na probavljivost proteina i udjel nenutritivnih sastojaka u koncentratu proteina graška', Food Technology and Biotechnology, 56(2), str. 257-264. doi: https://doi.org/10.17113/ftb.56.02.18.5450
Vancouver
Çabuk B, Nosworthy MG, Stone AK, Korber DR, Tanaka T, House JD i sur. Utjecaj fermentacije na probavljivost proteina i udjel nenutritivnih sastojaka u koncentratu proteina graška. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 21.11.2018.];56(2):257-264. doi: https://doi.org/10.17113/ftb.56.02.18.5450
IEEE
B. Çabuk, et al., "Utjecaj fermentacije na probavljivost proteina i udjel nenutritivnih sastojaka u koncentratu proteina graška", Food Technology and Biotechnology, vol.56, br. 2, str. 257-264, 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5450

Rad u XML formatu

Sažetak
In order to determine the impact of fermentation on protein quality, pea protein concentrate (PPC) was fermented with Lactobacillus plantarum for 11 h and total phenol and tannin contents, protease inhibitor activity, amino acid composition and in vitro protein digestibility were analyzed. Phenol levels, expressed as catechin equivalents (CE), increased on dry mass basis from 2.5 at 0 h to 4.9 mg CE per 1 g of PPC at 11 h. Tannin content rose from 0.14 at 0 h to a maximum of 0.96 mg CE per 1 g of PPC after 5 h, and thereafter declined to 0.79 mg/g after 11 h. After 9 h of fermentation trypsin inhibitor activity decreased, however, at all other fermentation times similar levels to the PPC at time 0 h were produced. Chymotrypsin inhibitor activity decreased from 3.7 to 1.1 chymotrypsin inhibitory units (CIU) per mg following 11 h of fermentation. Protein digestibility reached a maximum (87.4 %) after 5 h of fermentation, however, the sulfur amino acid score was reduced from 0.84 at 0 h to 0.66 at 11 h. This reduction in sulfur content altered the in vitro protein digestibility-corrected amino acid score from 67.0 % at 0 h to 54.6 % at 11 h. These data suggest that while fermentation is a viable method of reducing certain non-nutritive compounds in pea protein concentrate, selection of an alternative bacterium which metabolises sulfur amino acids to a lesser extent than L. plantarum should be considered.

Ključne riječi
pea protein concentrate; fermentation; non-nutritive compounds; protein digestibility; protein quality

Hrčak ID: 203494

URI
https://hrcak.srce.hr/203494

Reference

1 

Multari S, Stewart D, Russell WR. Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Compr Rev Food Sci Food Saf. 2015;14(5):511–22. DOI: http://dx.doi.org/10.1111/1541-4337.12146

2 

Sarwar G, Peace RW. Comparisons between true digestibility of total nitrogen and limiting amino acids in vegetable proteins fed to rats. J Nutr. 1986;116(7):1172–84. DOI: http://dx.doi.org/10.1093/jn/116.7.1172 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/3746456

3 

FAO/WHO. Protein quality evaluation: Report of the joint FAO/WHO expert consultation. Rome, Italy: Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO); 1991. Available from: http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf.

4 

Candela M, Astiasaran I, Bello J. Cooking and warm-holding: Effect on general composition and amino acids of kidney beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and lentils (Lens culinaris). J Agric Food Chem. 1997;45(12):4763–7. DOI: http://dx.doi.org/10.1021/jf9702609

5 

Yigzaw Y, Gorton L, Solomon T, Akalu G. Fermentation of seeds of teff (Eragrostis teff), grass-pea (Lathyrus sativus), and their mixtures: Aspects of nutrition and food safety. J Agric Food Chem. 2004;52(5):1163–9. DOI: http://dx.doi.org/10.1021/jf034742y PubMed: http://www.ncbi.nlm.nih.gov/pubmed/14995115

6 

Ramachandran S, Bairagi A, Ray AK. Improvement of nutritive value of grass pea (Lathyrus sativus) seed meal in the formulated diets for rohu, Labeo rohita (Hamilton) fingerlings after fermentation with a fish gut bacterium. Bioresour Technol. 2005;96(13):1465–72. DOI: http://dx.doi.org/10.1016/j.biortech.2004.12.002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15939274

7 

Torino MI, Limón RI, Martínez-Villaluenga C, Mäkinen S, Pihlanto A, Vidal-Valverde C, et al. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem. 2013;136(2):1030–7. DOI: http://dx.doi.org/10.1016/j.foodchem.2012.09.015 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23122159

8 

Elyas SHA, El Tinay AH, Yousif NE, Elsheikh EAE. Effect of natural fermentation on nutritive value and in vitro protein digestibility of pearl millet. Food Chem. 2002;78(1):75–9. DOI: http://dx.doi.org/10.1016/S0308-8146(01)00386-7

9 

Reyes-Moreno C, Cuevas-Rodríguez EO, Milán-Carrillo J, Cárdenas-Valenzuela OG, Barrón-Hoyos J. Solid state fermentation process for producing chickpea (Cicer arietinum L) tempeh flour. Physicochemical and nutritional characteristics of the product. J Sci Food Agric. 2004;84(3):271–8. DOI: http://dx.doi.org/10.1002/jsfa.1637

10 

Onwurafor EU, Onweluzo JC, Ezeoke AM. Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour. Niger Food J. 2014;32(1):89–96. DOI: http://dx.doi.org/10.1016/S0189-7241(15)30100-4

11 

Klupsaite D, Juodeikiene G, Zadeike D, Bartkiene E, Maknickiene Z, Liutkute G. The influence of lactic acid fermentation on functional properties of narrow-leaved lupine protein as functional additive for higher value wheat bread. Lebensm Wiss Technol. 2017;75:180–6. DOI: http://dx.doi.org/10.1016/j.lwt.2016.08.058

12 

Chawla P, Bhandari L, Sadh PK, Kaushik R. Impact of solid state fermentation (Aspergillus oryzae) on functional properties and mineral bioavailability of black eyed pea (Vigna unguiculata) seed flour. Cereal Chem. 2017;94(3):437–42. DOI: http://dx.doi.org/10.1094/CCHEM-05-16-0128-R

13 

Meinlschmidt P, Schweiggert-Weisz U, Eisner P. Soy protein hydrolysates fermentation: Effect of debittering and degradation of major soy allergens. Lebensm Wiss Technol. 2016;71:202–12. DOI: http://dx.doi.org/10.1016/j.lwt.2016.03.026

14 

Meinlschmidt P, Ueberham E, Lehmann J, Schweiggert-Weisz U, Eisner P. Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chem. 2016;205:229–38. DOI: http://dx.doi.org/10.1016/j.foodchem.2016.03.016 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27006235

15 

Shekib LA. Nutritional improvement of lentils, chick pea, rice and wheat by natural fermentation. Plant Foods Hum Nutr. 1994;46(3):201–5. DOI: http://dx.doi.org/10.1007/BF01088991 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/7855090

16 

Chandra-Hioe MV, Wong CHM, Arcot J. The potential use of fermented chickpea and faba bean flour as food ingredients. Plant Foods Hum Nutr. 2016;71(1):90–5. DOI: http://dx.doi.org/10.1007/s11130-016-0532-y PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26880215

17 

Hemalatha S, Platel K, Srinivasan K. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. Eur J Clin Nutr. 2007;61:342–8. DOI: http://dx.doi.org/10.1038/sj.ejcn.1602524 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16969377

18 

Nosworthy MG, Neufeld J, House JD. Determination of the in vivo and in vitro protein quality of pulse protein concentrates and isolates. FASEB J. 2016;30(1_suppl.):421–6.

19 

AACC International Method 22–40.01. Measurement of trypsin inhibitor activity of soy products—Spectrophotometric method. St. Paul, MN, USA: AACC International; 2006.

20 

Mondor M, Aksay S, Drolet H, Roufik S, Farnworth E, Boye JI. Influence of processing on composition and antinutritional factors of chickpea protein concentrates produced by isoelectric precipitation and ultrafiltration. Innov Food Sci Emerg Technol. 2009;10(3):342–7. DOI: http://dx.doi.org/10.1016/j.ifset.2009.01.007

21 

Makkar HPS, Siddhuraju S, Becker K. Plant secondary metabolites. In: Methods in molecular biology, vol 393. Totowa, NJ, USA: Humana Press; 2007. pp. 1-9. https://dpo.org/10.1007/978-1-59745-425-4

22 

Waterman PG, Mole S. Analysis of phenolic plant metabolites. Oxford, UK: Wiley-Blackwell; 1994.

23 

Makkar HP, Blümmel M, Borowy NK, Becker K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J Sci Food Agric. 1993;61(2):161–5. DOI: http://dx.doi.org/10.1002/jsfa.2740610205

24 

White JA, Hart RJ, Fry JC. An evaluation of the waters pico-tag system for the amino-acid analysis of food materials. J Automat Chem. 1986;8(4):170–7. DOI: http://dx.doi.org/10.1155/S1463924686000330 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18925132

25 

Landry J, Delhaye S. Determination of tryptophan in feedstuffs: Comparison of sodium hydroxide and barium hydroxide as hydrolysis agents. Food Chem. 1994;49(1):95–7. DOI: http://dx.doi.org/10.1016/0308-8146(94)90238-0

26 

Official Method AOAC. 988.15. Tryptophan in foods and food and feed ingredients, ion exchange chromatography method. Washington, DC, USA: AOAC International; 1995.

27 

FAO/WHO/UNU. Energy and protein requirements: Report of a joint FAO/WHO/UNU expert consultation. WHO Tech Rep Ser 724. Geneva, Switzerland: Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO); 1985. Available from: http://www.who.int/iris/handle/10665/39527.

28 

Hsu HW, Vavak DL, Satterlee LD, Miller GA. A multienzyme technique for estimating protein digestibility. J Food Sci. 1977;42(5):1269–73. DOI: http://dx.doi.org/10.1111/j.1365-2621.1977.tb14476.x

29 

Tinus T, Damour M, van Riel V, Sopade PA. Particle size-starch–protein digestibility relationships in cowpea (Vigna unguiculata). J Food Eng. 2012;113(2):254–64. DOI: http://dx.doi.org/10.1016/j.jfoodeng.2012.05.041

30 

Systat v. 10 software. Systat Software Inc., San Jose, CA, USA; 2001.

31 

Hahn DH, Rooney LW, Earp CF. Tannins and phenols of sorghum. Cereal Foods World. 1984;29(12):776–9.

32 

Gupta YP. Anti-nutritional and toxic factors in food legumes: A review. Plant Foods Hum Nutr. 1987;37(3):201–28. DOI: http://dx.doi.org/10.1007/BF01091786 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/2853348

33 

Oomah BD, Caspar F, Malcolmson LJ, Bellido AS. Phenolics and antioxidant activity of lentil and pea hulls. Food Res Int. 2011;44(1):436–41. DOI: http://dx.doi.org/10.1016/j.foodres.2010.09.027

34 

Wang X, Warkentin TD, Briggs CJ, Oomah BD, Campbell CG, Woods S. Trypsin inhibitor activity in field pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.). J Agric Food Chem. 1998;46(7):2620–3. DOI: http://dx.doi.org/10.1021/jf971007b

35 

Starzyńska-Janiszewska A, Stodolak B. Effect of inoculated lactic acid fermentation on antinutritional and antiradical properties of grass pea (Lathyrus sativus ‘Krab’) flour. Pol J Food Nutr Sci. 2011;61(4):245–9. DOI: http://dx.doi.org/10.2478/v10222-011-0027-3

36 

Coda R, Melama L, Rizzello CG, Curiel JA, Sibakov J, Holopainen U, et al. Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties. Int J Food Microbiol. 2015;193:34–42. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2014.10.012 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25462921

37 

Dueñas M, Fernández D, Hernández T, Estrella I, Muñoz R. Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J Sci Food Agric. 2005;85(2):297–304. DOI: http://dx.doi.org/10.1002/jsfa.1924

38 

McCue PP, Shetty K. Phenolic antioxidant mobilization during yogurt production from soymilk using kefir cultures. Process Biochem. 2005;40(5):1791–7. DOI: http://dx.doi.org/10.1016/j.procbio.2004.06.067

39 

Fernandez-Orozco R, Frias J, Muñoz R, Zielinski H, Piskula MK, Kozlowska H, et al. Fermentation as a bio-process to obtain functional soybean flours. J Agric Food Chem. 2007;55(22):8972–9. DOI: http://dx.doi.org/10.1021/jf071823b PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17907774

40 

Limón RI, Peñas E, Torino MI, Martínez-Villaluenga C, Dueñas M, Frias J. Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chem. 2015;172:343–52. DOI: http://dx.doi.org/10.1016/j.foodchem.2014.09.084 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25442563

41 

Osawa R, Kuroiso K, Goto S, Shimizu A. Isolation of tannin-degrading lactobacilli from humans and fermented foods. Appl Environ Microbiol. 2000;66(7):3093–7. DOI: http://dx.doi.org/10.1128/AEM.66.7.3093-3097.2000 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/10877812

42 

Rodríguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FL, Gómez-Cordovés C, et al. Food phenolics and lactic acid bacteria. Int J Food Microbiol. 2009;132(2-3):79–90. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2009.03.025 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19419788

43 

Stodolak B, Starzyńska-Janiszewska A. The influence of tempeh fermentation and conventional cooking on anti-nutrient level and protein bioavailability (in vitro test) of grass-pea seeds. J Sci Food Agric. 2008;88(13):2265–70. DOI: http://dx.doi.org/10.1002/jsfa.3341

44 

Sreekumar R, Al-Attabi Z, Deeth HC, Turner MS. Volatile sulfur compounds produced by probiotic bacteria in the presence of cysteine or methionine. Lett Appl Microbiol. 2009;48(6):777–82. DOI: http://dx.doi.org/10.1111/j.1472-765X.2009.02610.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19344359

[hrvatski]

Posjeta: 81 *