hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Kratko priopćenje
https://doi.org/10.17113/ftb.56.02.18.5393

Biološka raznolikost gena što sadržavaju genetičku uputu za enzime koji razgrađuju ugljikovodike iz uzoraka metagenoma izoliranih iz sedimenata sjevernog Jadranskog mora

Ranko Gacesa ; Department of Chemistry, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
Damir Baranasic ; Department of Genetics, University of Kaiserslautern, Postfach 3049, DE-67653 Kaiserslautern, Germany
Antonio Starcevic ; Centre of Research Excellence for Marine Bioprospecting - BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
Janko Diminic ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Marino Korlević ; Centre for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR- 52210 Rovinj, Croatia
Mirjana Najdek ; Centre for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR- 52210 Rovinj, Croatia
Maria Blažina ; Centre for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR- 52210 Rovinj, Croatia
Davor Oršolić ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Domagoj Kolesarić ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Paul F. Long ; Department of Chemistry, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
John Cullum ; Department of Genetics, University of Kaiserslautern, Postfach 3049, DE-67653 Kaiserslautern, Germany
Daslav Hranueli ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Sandi Orlic ; Center of Excellence for Science and Technology Integrating Mediterranean Region, Microbial Ecology, HR-10000 Zagreb, Croatia
Jurica Zucko ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia

Puni tekst: hrvatski, pdf (972 KB) str. 270-277 preuzimanja: 14* citiraj
APA 6th Edition
Gacesa, R., Baranasic, D., Starcevic, A., Diminic, J., Korlević, M., Najdek, M., ... Zucko, J. (2018). Biološka raznolikost gena što sadržavaju genetičku uputu za enzime koji razgrađuju ugljikovodike iz uzoraka metagenoma izoliranih iz sedimenata sjevernog Jadranskog mora. Food Technology and Biotechnology, 56 (2), 270-277. https://doi.org/10.17113/ftb.56.02.18.5393
MLA 8th Edition
Gacesa, Ranko, et al. "Biološka raznolikost gena što sadržavaju genetičku uputu za enzime koji razgrađuju ugljikovodike iz uzoraka metagenoma izoliranih iz sedimenata sjevernog Jadranskog mora." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 270-277. https://doi.org/10.17113/ftb.56.02.18.5393. Citirano 24.09.2018.
Chicago 17th Edition
Gacesa, Ranko, Damir Baranasic, Antonio Starcevic, Janko Diminic, Marino Korlević, Mirjana Najdek, Maria Blažina, et al. "Biološka raznolikost gena što sadržavaju genetičku uputu za enzime koji razgrađuju ugljikovodike iz uzoraka metagenoma izoliranih iz sedimenata sjevernog Jadranskog mora." Food Technology and Biotechnology 56, br. 2 (2018): 270-277. https://doi.org/10.17113/ftb.56.02.18.5393
Harvard
Gacesa, R., et al. (2018). 'Biološka raznolikost gena što sadržavaju genetičku uputu za enzime koji razgrađuju ugljikovodike iz uzoraka metagenoma izoliranih iz sedimenata sjevernog Jadranskog mora', Food Technology and Biotechnology, 56(2), str. 270-277. doi: https://doi.org/10.17113/ftb.56.02.18.5393
Vancouver
Gacesa R, Baranasic D, Starcevic A, Diminic J, Korlević M, Najdek M i sur. Biološka raznolikost gena što sadržavaju genetičku uputu za enzime koji razgrađuju ugljikovodike iz uzoraka metagenoma izoliranih iz sedimenata sjevernog Jadranskog mora. Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):270-277. doi: https://doi.org/10.17113/ftb.56.02.18.5393
IEEE
R. Gacesa, et al., "Biološka raznolikost gena što sadržavaju genetičku uputu za enzime koji razgrađuju ugljikovodike iz uzoraka metagenoma izoliranih iz sedimenata sjevernog Jadranskog mora", Food Technology and Biotechnology, vol.56, br. 2, str. 270-277, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5393
Puni tekst: engleski, pdf (972 KB) str. 270-277 preuzimanja: 13* citiraj
APA 6th Edition
Gacesa, R., Baranasic, D., Starcevic, A., Diminic, J., Korlević, M., Najdek, M., ... Zucko, J. (2018). Bioprospecting for Genes Encoding Hydrocarbon-Degrading Enzymes from Metagenomic Samples Isolated from Northern Adriatic Sea Sediments. Food Technology and Biotechnology, 56 (2), 270-277. https://doi.org/10.17113/ftb.56.02.18.5393
MLA 8th Edition
Gacesa, Ranko, et al. "Bioprospecting for Genes Encoding Hydrocarbon-Degrading Enzymes from Metagenomic Samples Isolated from Northern Adriatic Sea Sediments." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 270-277. https://doi.org/10.17113/ftb.56.02.18.5393. Citirano 24.09.2018.
Chicago 17th Edition
Gacesa, Ranko, Damir Baranasic, Antonio Starcevic, Janko Diminic, Marino Korlević, Mirjana Najdek, Maria Blažina, et al. "Bioprospecting for Genes Encoding Hydrocarbon-Degrading Enzymes from Metagenomic Samples Isolated from Northern Adriatic Sea Sediments." Food Technology and Biotechnology 56, br. 2 (2018): 270-277. https://doi.org/10.17113/ftb.56.02.18.5393
Harvard
Gacesa, R., et al. (2018). 'Bioprospecting for Genes Encoding Hydrocarbon-Degrading Enzymes from Metagenomic Samples Isolated from Northern Adriatic Sea Sediments', Food Technology and Biotechnology, 56(2), str. 270-277. doi: https://doi.org/10.17113/ftb.56.02.18.5393
Vancouver
Gacesa R, Baranasic D, Starcevic A, Diminic J, Korlević M, Najdek M i sur. Bioprospecting for Genes Encoding Hydrocarbon-Degrading Enzymes from Metagenomic Samples Isolated from Northern Adriatic Sea Sediments. Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):270-277. doi: https://doi.org/10.17113/ftb.56.02.18.5393
IEEE
R. Gacesa, et al., "Bioprospecting for Genes Encoding Hydrocarbon-Degrading Enzymes from Metagenomic Samples Isolated from Northern Adriatic Sea Sediments", Food Technology and Biotechnology, vol.56, br. 2, str. 270-277, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5393

Rad u XML formatu

Sažetak
Izrađene su tri metagenomske baze (knjižnice) podataka pomoću površinskih uzoraka sedimenata iz sjevernog Jadranskog mora. Jedan je uzorak uzet s izrazito onečišćene lokacije, drugi s nezagađene, a treći, prikupljen s onečišćene lokacije, obogaćen je sirovom naftom. Rezultati metagenomskih analiza pohranjeni su u relacijsku bazu podataka REDPET (http://redpet.bioinfo.pbf.hr/REDPET), koja je izrađena na prethodno razvijenoj platformi MEGGASENSE. Baza uključuje taksonomske podatke za procjenu biološke raznolikosti metagenomskih podataka i općenite funkcionalne analize gena provedene pomoću profila skrivenih Markovljevih modela (HMM), temeljenih na bazi podataka KEGG. Razvijen je niz od 22 specijalizirana profila HMM radi otkrivanja gena što kodiraju enzime koji razgrađuju ugljikovodike. Primjenom tih profila je utvrđeno da je metagenomska knjižnica dobivena iz uzoraka obogaćenih naftom sadržavala veći broj gena za aerobnu razgradnju n-alkana. Pomoću potencijalnih alkB i almA gena iz metagenomske knjižnice potvrđena je mogućnost primjene opisanog sustava za procjenu biološke raznolikosti.

Ključne riječi
onečišćenje naftom; razgradnja n-alkana; baza podataka

Projekti
HRZZ / IS / IS-09/5 - Rizici zagađenja Jadranskog mora naftom

Hrčak ID: 203496

URI
https://hrcak.srce.hr/203496

Reference

1 

Korlević M, Zucko J, Dragić MN, Blažina M, Pustijanac E, Zeljko TV, et al. Bacterial diversity of polluted surface sediments in the northern Adriatic Sea. Syst Appl Microbiol. 2015;38(3):189–97. DOI: http://dx.doi.org/10.1016/j.syapm.2015.03.001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25857844

2 

van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol. 2007;74(1):13–21. DOI: http://dx.doi.org/10.1007/s00253-006-0748-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17216462

3 

Wang W, Shao Z. Enzymes and genes involved in aerobic alkane degradation. Front Microbiol. 2013;4:116. DOI: http://dx.doi.org/10.3389/fmicb.2013.00116 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23755043

4 

Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, et al. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol. 2013;4:50. DOI: http://dx.doi.org/10.3389/fmicb.2013.00050 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23508965

5 

Tan B, Dong X, Sensen CW, Foght J. Metagenomic analysis of an anaerobic alkane-degrading microbial culture: Potential hydrocarbon-activating pathways and inferred roles of community members. Genome. 2013;56(10):599–611. DOI: http://dx.doi.org/10.1139/gen-2013-0069 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24237341

6 

Gao W, Cui Z, Li Q, Xu G, Jia X, Zheng L. Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie van Leeuwenhoek. 2013;103(3):485–91. DOI: http://dx.doi.org/10.1007/s10482-012-9830-z PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23117603

7 

Gao J, Ellis LBM, Wackett LP. The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res. 2010;38 Suppl. 1:D488–91. DOI: http://dx.doi.org/10.1093/nar/gkp771 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19767608

8 

Vilchez-Vargas R, Junca H, Pieper DH. Metabolic networks, microbial ecology and ‘omics’ technologies: Towards understanding in situ biodegradation processes. Environ Microbiol. 2010;12(12):3089–104. DOI: http://dx.doi.org/10.1111/j.1462-2920.2010.02340.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20860734

9 

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. DOI: http://dx.doi.org/10.1093/nar/25.17.3389 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9254694

10 

Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009;23:205–11. DOI: http://dx.doi.org/10.1142/9781848165632_0019 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20180275

11 

Gacesa R, Zucko J, Petursdottir SK, Gudmundsdottir EE, Fridjonsson OH, Diminic J, et al. MEGGASENSE - The metagenome/genome annotated sequence natural language search engine: A platform for the construction of sequence data warehouses. Food Technol Biotechnol. 2017;55(2):251–7. DOI: http://dx.doi.org/10.17113/ftb.55.02.17.4749 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/28867956

12 

Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40 D1:D109–14. DOI: http://dx.doi.org/10.1093/nar/gkr988 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22080510

13 

Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH. the UniProt Consortium. UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31(6):926–32. DOI: http://dx.doi.org/10.1093/bioinformatics/btu739 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25398609

14 

Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257. DOI: http://dx.doi.org/10.1038/ncomms11257 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27071849

15 

O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44 D1:D733–45. DOI: http://dx.doi.org/10.1093/nar/gkv1189 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26553804

16 

Corteselli EM, Aitken MD, Singleton DR. Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov. Int J Syst Evol Microbiol. 2017;67(4):925–31. DOI: http://dx.doi.org/10.1099/ijsem.0.001714 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27926817

17 

King GM, Kostka JE, Hazen TC, Sobecky PA. Microbial responses to the Deepwater Horizon oil spill: From coastal wetlands to the deep sea. Ann Rev Mar Sci. 2015;7:377–401. DOI: http://dx.doi.org/10.1146/annurev-marine-010814-015543 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25251273

18 

The REDPET database. Zagreb, Croatia; 2017. Available from: http://redpet.bioinfo.pbf.hr/REDPET.

19 

Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011;12:385. DOI: http://dx.doi.org/10.1186/1471-2105-12-385 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21961884

20 

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2017;45 D1:D37–42. DOI: http://dx.doi.org/10.1093/nar/gkw1070 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27899564

21 

Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010;95(6):315–27. DOI: http://dx.doi.org/10.1016/j.ygeno.2010.03.001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20211242

[engleski]

Posjeta: 44 *