hrcak mascot   Srce   HID

Pregledni rad
https://doi.org/10.31803/tg-20190328111708

Finite difference solution of plate bending using Wolfram Mathematica

Katarina Pisačić   ORCID icon orcid.org/0000-0002-9425-3708 ; University North, University center Varaždin, 104. brigade 3, 42000 Varaždin, Croatia
Marko Horvat ; University North, University center Varaždin, 104. brigade 3, 42000 Varaždin, Croatia
Zlatko Botak   ORCID icon orcid.org/0000-0002-5590-0917 ; University North, University center Varaždin, 104. brigade 3, 42000 Varaždin, Croatia

Puni tekst: engleski, pdf (2 MB) str. 241-247 preuzimanja: 410* citiraj
APA 6th Edition
Pisačić, K., Horvat, M. i Botak, Z. (2019). Finite difference solution of plate bending using Wolfram Mathematica. Tehnički glasnik, 13 (3), 241-247. https://doi.org/10.31803/tg-20190328111708
MLA 8th Edition
Pisačić, Katarina, et al. "Finite difference solution of plate bending using Wolfram Mathematica." Tehnički glasnik, vol. 13, br. 3, 2019, str. 241-247. https://doi.org/10.31803/tg-20190328111708. Citirano 16.06.2021.
Chicago 17th Edition
Pisačić, Katarina, Marko Horvat i Zlatko Botak. "Finite difference solution of plate bending using Wolfram Mathematica." Tehnički glasnik 13, br. 3 (2019): 241-247. https://doi.org/10.31803/tg-20190328111708
Harvard
Pisačić, K., Horvat, M., i Botak, Z. (2019). 'Finite difference solution of plate bending using Wolfram Mathematica', Tehnički glasnik, 13(3), str. 241-247. https://doi.org/10.31803/tg-20190328111708
Vancouver
Pisačić K, Horvat M, Botak Z. Finite difference solution of plate bending using Wolfram Mathematica. Tehnički glasnik [Internet]. 2019 [pristupljeno 16.06.2021.];13(3):241-247. https://doi.org/10.31803/tg-20190328111708
IEEE
K. Pisačić, M. Horvat i Z. Botak, "Finite difference solution of plate bending using Wolfram Mathematica", Tehnički glasnik, vol.13, br. 3, str. 241-247, 2019. [Online]. https://doi.org/10.31803/tg-20190328111708

Sažetak
This article describes the procedure of calculating deflection of rectangular plate using a finite difference method, programmed in Wolfram Mathematica. Homogenous rectangular plate under uniform pressure is simulated for this paper. In the introduction, basic assumptions are given and the problem is defined. Chapters that follow describe basic definitions for plate bending, deflection, slope and curvature. The following boundary condition is used in this article: rectangular plate is wedged on one side and simply supported on three sides. Using finite difference method, linear equation system is given and solved in Wolfram Mathematica. System of equations is built using the mapping function and solved with solve function. Solutions are given in the graphs. Such obtained solutions are compared to the finite element method solver NastranInCad.

Ključne riječi
Finite difference method; NastranInCad; Mathematica

Hrčak ID: 225479

URI
https://hrcak.srce.hr/225479

Posjeta: 551 *