hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.43.1.10

Frictional contact problem in dynamic electroelasticity

Mostafa Kabbaj ; Département de Mathématiques, Faculté des Sciences et Techniques, Université Moulay Ismail
El-H. Essoufi ; Département de Mathématiques, Faculté des Sciences et Techniques, Universitée Hassan Premier

Puni tekst: engleski, pdf (205 KB) str. 137-158 preuzimanja: 477* citiraj
APA 6th Edition
Kabbaj, M. i Essoufi, E. (2008). Frictional contact problem in dynamic electroelasticity. Glasnik matematički, 43 (1), 137-158. https://doi.org/10.3336/gm.43.1.10
MLA 8th Edition
Kabbaj, Mostafa i El-H. Essoufi. "Frictional contact problem in dynamic electroelasticity." Glasnik matematički, vol. 43, br. 1, 2008, str. 137-158. https://doi.org/10.3336/gm.43.1.10. Citirano 24.09.2021.
Chicago 17th Edition
Kabbaj, Mostafa i El-H. Essoufi. "Frictional contact problem in dynamic electroelasticity." Glasnik matematički 43, br. 1 (2008): 137-158. https://doi.org/10.3336/gm.43.1.10
Harvard
Kabbaj, M., i Essoufi, E. (2008). 'Frictional contact problem in dynamic electroelasticity', Glasnik matematički, 43(1), str. 137-158. https://doi.org/10.3336/gm.43.1.10
Vancouver
Kabbaj M, Essoufi E. Frictional contact problem in dynamic electroelasticity. Glasnik matematički [Internet]. 2008 [pristupljeno 24.09.2021.];43(1):137-158. https://doi.org/10.3336/gm.43.1.10
IEEE
M. Kabbaj i E. Essoufi, "Frictional contact problem in dynamic electroelasticity", Glasnik matematički, vol.43, br. 1, str. 137-158, 2008. [Online]. https://doi.org/10.3336/gm.43.1.10

Sažetak
The dynamic evolution with frictional contact of a electroelastic body is considered. In modelling the contact, the Tresca model is used. We derive a variational formulation for the model in a form of a coupled system involving the displacement and the electric potential fields. We provide existence and uniqueness result. The proof is based on a regularization method, Galerkin method, compactness and lower semicontinuity arguments. Such a result extend the result obtained by Duvaut and Lions, where the analysis of friction in dynamic elasticity materials was provided. The novelty of this paper consists in the fact that here we take into account the piezoelectric properties of the materials.

Ključne riječi
Dynamic electroelasticity; second-order hyperbolic variational inequality; regularization method; Faedo-Galerkin method; compactness method; existence; uniqueness

Hrčak ID: 23537

URI
https://hrcak.srce.hr/23537

Posjeta: 780 *