hrcak mascot   Srce   HID

Izvorni znanstveni članak

PL Morse theory

Mladen Bestvina ; Department of Mathematics, University of Utah,

Puni tekst: engleski, pdf (179 KB) str. 149-162 preuzimanja: 1.205* citiraj
APA 6th Edition
Bestvina, M. (2008). PL Morse theory. Mathematical Communications, 13 (2), 149-162. Preuzeto s https://hrcak.srce.hr/30883
MLA 8th Edition
Bestvina, Mladen. "PL Morse theory." Mathematical Communications, vol. 13, br. 2, 2008, str. 149-162. https://hrcak.srce.hr/30883. Citirano 20.10.2020.
Chicago 17th Edition
Bestvina, Mladen. "PL Morse theory." Mathematical Communications 13, br. 2 (2008): 149-162. https://hrcak.srce.hr/30883
Harvard
Bestvina, M. (2008). 'PL Morse theory', Mathematical Communications, 13(2), str. 149-162. Preuzeto s: https://hrcak.srce.hr/30883 (Datum pristupa: 20.10.2020.)
Vancouver
Bestvina M. PL Morse theory. Mathematical Communications [Internet]. 2008 [pristupljeno 20.10.2020.];13(2):149-162. Dostupno na: https://hrcak.srce.hr/30883
IEEE
M. Bestvina, "PL Morse theory", Mathematical Communications, vol.13, br. 2, str. 149-162, 2008. [Online]. Dostupno na: https://hrcak.srce.hr/30883. [Citirano: 20.10.2020.]

Sažetak
Morse theory is an extremely versatile tool, useful in a variety of
situations and parts of topology and geometry. In these introductory
lectures we will cover the foundations and discuss some typical
applications. We will start by reviewing smooth Morse theory, then giving the PL counterpart. The rest of the sections consist of applications. The proofs are fairly detailed in the beginning but get sketchier as we go along. The reader is invited to find new applications.

Ključne riječi
Morse theory; geometric group theory

Hrčak ID: 30883

URI
https://hrcak.srce.hr/30883

Posjeta: 1.531 *