hrcak mascot   Srce   HID

Stručni rad

Vertex- and Edge-Altitudes of a Tetrahedron

Gunter Weiss ; Institute of Geometry Dresden University of Technology, Dresden, Germany
Hans Havlicek   ORCID icon ; Institute of Geometry Vienna University of Technology, Vienna, Austria

Puni tekst: njemački, pdf (197 KB) str. 71-80 preuzimanja: 431* citiraj
APA 6th Edition
Weiss, G. i Havlicek, H. (2002). Ecken- und Kantenhöhen im Tetraeder. KoG, 6. (6.), 71-80. Preuzeto s
MLA 8th Edition
Weiss, Gunter i Hans Havlicek. "Ecken- und Kantenhöhen im Tetraeder." KoG, vol. 6., br. 6., 2002, str. 71-80. Citirano 30.10.2020.
Chicago 17th Edition
Weiss, Gunter i Hans Havlicek. "Ecken- und Kantenhöhen im Tetraeder." KoG 6., br. 6. (2002): 71-80.
Weiss, G., i Havlicek, H. (2002). 'Ecken- und Kantenhöhen im Tetraeder', KoG, 6.(6.), str. 71-80. Preuzeto s: (Datum pristupa: 30.10.2020.)
Weiss G, Havlicek H. Ecken- und Kantenhöhen im Tetraeder. KoG [Internet]. 2002 [pristupljeno 30.10.2020.];6.(6.):71-80. Dostupno na:
G. Weiss i H. Havlicek, "Ecken- und Kantenhöhen im Tetraeder", KoG, vol.6., br. 6., str. 71-80, 2002. [Online]. Dostupno na: [Citirano: 30.10.2020.]

A k-altitude of an n-simplex meets a k-face and its opposite face orthogonally. A tetrahedron T possesses four "vertexaltitudes"( k = 0) and three "edge-altitudes" (k = 1). The altitudes of each type are generators of special hyperboloids connected with T.

The paper treats these hyperboloids in terms of descriptive geometry and gives synthetic proofs for some well-known properties. It turns out, for example, that if the altitudes of one type intersect in one point, then so do the others, and the points of intersection coincide.

Ključne riječi
tetrahedron; hyperboloid of altitudes; central projection

Hrčak ID: 3943


[hrvatski] [njemački]

Posjeta: 1.098 *