hrcak mascot   Srce   HID

Izvorni znanstveni članak

Local connctedness and unicoherence at subcontinua

Deborah Oliveros
Isabel Puga

Puni tekst: engleski, pdf (117 KB) str. 223-232 preuzimanja: 273* citiraj
APA 6th Edition
Oliveros, D. i Puga, I. (2001). Local connctedness and unicoherence at subcontinua. Glasnik matematički, 36 (2), 223-232. Preuzeto s https://hrcak.srce.hr/4835
MLA 8th Edition
Oliveros, Deborah i Isabel Puga. "Local connctedness and unicoherence at subcontinua." Glasnik matematički, vol. 36, br. 2, 2001, str. 223-232. https://hrcak.srce.hr/4835. Citirano 25.10.2021.
Chicago 17th Edition
Oliveros, Deborah i Isabel Puga. "Local connctedness and unicoherence at subcontinua." Glasnik matematički 36, br. 2 (2001): 223-232. https://hrcak.srce.hr/4835
Harvard
Oliveros, D., i Puga, I. (2001). 'Local connctedness and unicoherence at subcontinua', Glasnik matematički, 36(2), str. 223-232. Preuzeto s: https://hrcak.srce.hr/4835 (Datum pristupa: 25.10.2021.)
Vancouver
Oliveros D, Puga I. Local connctedness and unicoherence at subcontinua. Glasnik matematički [Internet]. 2001 [pristupljeno 25.10.2021.];36(2):223-232. Dostupno na: https://hrcak.srce.hr/4835
IEEE
D. Oliveros i I. Puga, "Local connctedness and unicoherence at subcontinua", Glasnik matematički, vol.36, br. 2, str. 223-232, 2001. [Online]. Dostupno na: https://hrcak.srce.hr/4835. [Citirano: 25.10.2021.]

Sažetak
Let X be a continuum and Y a subcontinuum of X. The purpose of this paper is to investigate the relation between the conditions "X is unicoherent at Y" and "Y is unicoherent". We say that X is strangled by Y if the closure of each component of X \ Y intersects Y in one single point. We prove: If X is strangled by Y and Y is unicoherent then X is unicoherent at Y. We also prove the converse for a locally connected (not necessarily metric) continuum X.

Ključne riječi
Unicoherence; unicoherence at subcontinua; strangled; cyclic element; local connectedness; semilocal connectedness

Hrčak ID: 4835

URI
https://hrcak.srce.hr/4835

Posjeta: 468 *