hrcak mascot   Srce   HID

Izvorni znanstveni članak

Cluj CJ and PIv Polynomials

Mircea V. Diudea ; Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj, Romania
Aleksandar Ilić ; Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
Modjtaba Ghorbani ; Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, I R Iran
Ali R. Ashrafi ; Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, I R Iran

Puni tekst: engleski, pdf (2 MB) str. 283-289 preuzimanja: 396* citiraj
APA 6th Edition
Diudea, M.V., Ilić, A., Ghorbani, M. i Ashrafi, A.R. (2010). Cluj CJ and PIv Polynomials. Croatica Chemica Acta, 83 (3), 283-289. Preuzeto s https://hrcak.srce.hr/62205
MLA 8th Edition
Diudea, Mircea V., et al. "Cluj CJ and PIv Polynomials." Croatica Chemica Acta, vol. 83, br. 3, 2010, str. 283-289. https://hrcak.srce.hr/62205. Citirano 06.03.2021.
Chicago 17th Edition
Diudea, Mircea V., Aleksandar Ilić, Modjtaba Ghorbani i Ali R. Ashrafi. "Cluj CJ and PIv Polynomials." Croatica Chemica Acta 83, br. 3 (2010): 283-289. https://hrcak.srce.hr/62205
Harvard
Diudea, M.V., et al. (2010). 'Cluj CJ and PIv Polynomials', Croatica Chemica Acta, 83(3), str. 283-289. Preuzeto s: https://hrcak.srce.hr/62205 (Datum pristupa: 06.03.2021.)
Vancouver
Diudea MV, Ilić A, Ghorbani M, Ashrafi AR. Cluj CJ and PIv Polynomials. Croatica Chemica Acta [Internet]. 2010 [pristupljeno 06.03.2021.];83(3):283-289. Dostupno na: https://hrcak.srce.hr/62205
IEEE
M.V. Diudea, A. Ilić, M. Ghorbani i A.R. Ashrafi, "Cluj CJ and PIv Polynomials", Croatica Chemica Acta, vol.83, br. 3, str. 283-289, 2010. [Online]. Dostupno na: https://hrcak.srce.hr/62205. [Citirano: 06.03.2021.]

Sažetak
A parallel between the counting polynomials CJ(x) and PIv(x), proposed by the groups of Diudea
(Romania) and Ashrafi (Iran), respectively, is presented. The both polynomials count the nonequidistant
vertices, with respect to any edge in a graph; the difference appeared at the operational stage,
as will be demonstrated in this paper. Their first derivatives, in x = 1, provide one and the same value;
however, the second derivatives are different. Analytical relations for calculating these polynomials and
their single number descriptors, in some classes of graphs are derived.

Ključne riječi
counting polynomial; Cluj index; PI vertex index; Cluj matrix

Hrčak ID: 62205

URI
https://hrcak.srce.hr/62205

Posjeta: 638 *