hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.2498/cit.1001913

Using Machine Learning on Sensor Data

Alexandra Moraru ; Jožef Stefan Institute, Ljubljana, Slovenia
Marko Pesko ; Jožef Stefan Institute, Ljubljana, Slovenia
Maria Porcius ; J. Stefan International Postgraduate School, Ljubljana, Slovenia
Carolina Fortuna ; Jožef Stefan Institute, Ljubljana, Slovenia
Dunja Mladenic ; Jožef Stefan Institute, Ljubljana, Slovenia

Puni tekst: engleski, pdf (366 KB) str. 341-347 preuzimanja: 11.140* citiraj
APA 6th Edition
Moraru, A., Pesko, M., Porcius, M., Fortuna, C. i Mladenic, D. (2010). Using Machine Learning on Sensor Data. Journal of computing and information technology, 18 (4), 341-347. https://doi.org/10.2498/cit.1001913
MLA 8th Edition
Moraru, Alexandra, et al. "Using Machine Learning on Sensor Data." Journal of computing and information technology, vol. 18, br. 4, 2010, str. 341-347. https://doi.org/10.2498/cit.1001913. Citirano 07.12.2019.
Chicago 17th Edition
Moraru, Alexandra, Marko Pesko, Maria Porcius, Carolina Fortuna i Dunja Mladenic. "Using Machine Learning on Sensor Data." Journal of computing and information technology 18, br. 4 (2010): 341-347. https://doi.org/10.2498/cit.1001913
Harvard
Moraru, A., et al. (2010). 'Using Machine Learning on Sensor Data', Journal of computing and information technology, 18(4), str. 341-347. https://doi.org/10.2498/cit.1001913
Vancouver
Moraru A, Pesko M, Porcius M, Fortuna C, Mladenic D. Using Machine Learning on Sensor Data. Journal of computing and information technology [Internet]. 2010 [pristupljeno 07.12.2019.];18(4):341-347. https://doi.org/10.2498/cit.1001913
IEEE
A. Moraru, M. Pesko, M. Porcius, C. Fortuna i D. Mladenic, "Using Machine Learning on Sensor Data", Journal of computing and information technology, vol.18, br. 4, str. 341-347, 2010. [Online]. https://doi.org/10.2498/cit.1001913

Sažetak
Extracting useful information from raw sensor data requires specific methods and algorithms. We describe a vertical system integration of a sensor node and a toolkit of machine learning algorithms for predicting the number of persons located in a closed space. The dataset used as input for the learning algorithms is composed of automatically collected sensor data and additional manually introduced data. We analyze the dataset and evaluate the performance of two types ofmachine learning algorithms on this dataset: classification and regression. With our system settings, the experiments show that augmenting sensor data with proper information can improve prediction results and also the classification algorithm performed better.

Ključne riječi
sensor node; data mining; machine learning; prediction

Hrčak ID: 63904

URI
https://hrcak.srce.hr/63904

Posjeta: 11.596 *