hrcak mascot   Srce   HID

Izvorni znanstveni članak

Lifting a circular membrane by unitary forces

Lucio R. Berrone

Puni tekst: engleski, pdf (375 KB) str. 5-10 preuzimanja: 157* citiraj
APA 6th Edition
Berrone, L.R. (1999). Lifting a circular membrane by unitary forces. Glasnik matematički, 34 (1), 5-10. Preuzeto s https://hrcak.srce.hr/6396
MLA 8th Edition
Berrone, Lucio R.. "Lifting a circular membrane by unitary forces." Glasnik matematički, vol. 34, br. 1, 1999, str. 5-10. https://hrcak.srce.hr/6396. Citirano 19.10.2021.
Chicago 17th Edition
Berrone, Lucio R.. "Lifting a circular membrane by unitary forces." Glasnik matematički 34, br. 1 (1999): 5-10. https://hrcak.srce.hr/6396
Harvard
Berrone, L.R. (1999). 'Lifting a circular membrane by unitary forces', Glasnik matematički, 34(1), str. 5-10. Preuzeto s: https://hrcak.srce.hr/6396 (Datum pristupa: 19.10.2021.)
Vancouver
Berrone LR. Lifting a circular membrane by unitary forces. Glasnik matematički [Internet]. 1999 [pristupljeno 19.10.2021.];34(1):5-10. Dostupno na: https://hrcak.srce.hr/6396
IEEE
L.R. Berrone, "Lifting a circular membrane by unitary forces", Glasnik matematički, vol.34, br. 1, str. 5-10, 1999. [Online]. Dostupno na: https://hrcak.srce.hr/6396. [Citirano: 19.10.2021.]

Sažetak
Let Ω be a convex membrane. We lift certain parts Γ of its boundary by means of unitary forces while the remaining parts are maintained at level 0. Call u[Γ] the position that the such lifted membrane assumes. When the parts Γ are varying on ∂Ω so that their total lenght C is preserved, it has been conjectured that the functional Γ ||u(Γ)||p attain its maximum value for a certain conected arc of lenght C. In this paper we present a proof of this conjecture for the case in which Ω is a circle and p = 1.

Ključne riječi
Convex membrane

Hrčak ID: 6396

URI
https://hrcak.srce.hr/6396

Posjeta: 321 *