hrcak mascot   Srce   HID

Izvorni znanstveni članak

Proper metric spaces and Higson compactifications of product spaces

Kazuo Tomoyasu

Puni tekst: engleski, pdf (614 KB) str. 65-72 preuzimanja: 411* citiraj
APA 6th Edition
Tomoyasu, K. (1999). Proper metric spaces and Higson compactifications of product spaces. Glasnik matematički, 34 (1), 65-72. Preuzeto s https://hrcak.srce.hr/6403
MLA 8th Edition
Tomoyasu, Kazuo. "Proper metric spaces and Higson compactifications of product spaces." Glasnik matematički, vol. 34, br. 1, 1999, str. 65-72. https://hrcak.srce.hr/6403. Citirano 16.10.2021.
Chicago 17th Edition
Tomoyasu, Kazuo. "Proper metric spaces and Higson compactifications of product spaces." Glasnik matematički 34, br. 1 (1999): 65-72. https://hrcak.srce.hr/6403
Harvard
Tomoyasu, K. (1999). 'Proper metric spaces and Higson compactifications of product spaces', Glasnik matematički, 34(1), str. 65-72. Preuzeto s: https://hrcak.srce.hr/6403 (Datum pristupa: 16.10.2021.)
Vancouver
Tomoyasu K. Proper metric spaces and Higson compactifications of product spaces. Glasnik matematički [Internet]. 1999 [pristupljeno 16.10.2021.];34(1):65-72. Dostupno na: https://hrcak.srce.hr/6403
IEEE
K. Tomoyasu, "Proper metric spaces and Higson compactifications of product spaces", Glasnik matematički, vol.34, br. 1, str. 65-72, 1999. [Online]. Dostupno na: https://hrcak.srce.hr/6403. [Citirano: 16.10.2021.]

Sažetak
Let (X, d) be a non-compact metric space. We provide an equivalent condition that the metric d is proper on X. Xd denotes the Higson compastification of a non-compact proper metric space (X, d). In this paper we show that if (X, dX) is a non-compact proper metric space and (Y, dY) is a non-compact metric space, then X × Y max{dX, dY} is not equivalent to X dX × Y dY.

Ključne riječi
Higson compactification; Higson corona; proper metric spaces

Hrčak ID: 6403

URI
https://hrcak.srce.hr/6403

Posjeta: 621 *