hrcak mascot   Srce   HID

Original scientific paper

Proper metric spaces and Higson compactifications of product spaces

Kazuo Tomoyasu

Fulltext: english, pdf (614 KB) pages 65-72 downloads: 413* cite
APA 6th Edition
Tomoyasu, K. (1999). Proper metric spaces and Higson compactifications of product spaces. Glasnik matematički, 34 (1), 65-72. Retrieved from https://hrcak.srce.hr/6403
MLA 8th Edition
Tomoyasu, Kazuo. "Proper metric spaces and Higson compactifications of product spaces." Glasnik matematički, vol. 34, no. 1, 1999, pp. 65-72. https://hrcak.srce.hr/6403. Accessed 3 Dec. 2021.
Chicago 17th Edition
Tomoyasu, Kazuo. "Proper metric spaces and Higson compactifications of product spaces." Glasnik matematički 34, no. 1 (1999): 65-72. https://hrcak.srce.hr/6403
Harvard
Tomoyasu, K. (1999). 'Proper metric spaces and Higson compactifications of product spaces', Glasnik matematički, 34(1), pp. 65-72. Available at: https://hrcak.srce.hr/6403 (Accessed 03 December 2021)
Vancouver
Tomoyasu K. Proper metric spaces and Higson compactifications of product spaces. Glasnik matematički [Internet]. 1999 [cited 2021 December 03];34(1):65-72. Available from: https://hrcak.srce.hr/6403
IEEE
K. Tomoyasu, "Proper metric spaces and Higson compactifications of product spaces", Glasnik matematički, vol.34, no. 1, pp. 65-72, 1999. [Online]. Available: https://hrcak.srce.hr/6403. [Accessed: 03 December 2021]

Abstracts
Let (X, d) be a non-compact metric space. We provide an equivalent condition that the metric d is proper on X. Xd denotes the Higson compastification of a non-compact proper metric space (X, d). In this paper we show that if (X, dX) is a non-compact proper metric space and (Y, dY) is a non-compact metric space, then X × Y max{dX, dY} is not equivalent to X dX × Y dY.

Keywords
Higson compactification; Higson corona; proper metric spaces

Hrčak ID: 6403

URI
https://hrcak.srce.hr/6403

Visits: 626 *