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 Abstract: 
The construction industry is increasingly focused on 
sustainability to reduce environmental impact. 
Researchers are actively exploring alternative materials 
to replace clinker-based binders. This study specifically 
investigates the use of eggshell powder (ESP) as a 
sustainable substitute in construction. Portland slag 
cement (PSC) is partially replaced by ESP in concrete 
production for this purpose. To assess the effectiveness 
of ESP in enhancing binder properties, the study 
analyses experimental data for compressive and flexural 
strength. Artificial Neural Network (ANN) modelling is 
employed for this analysis to predict material 
performance. The model undergoes training and testing 
using input data to ensure accuracy and reliability. The 
success of the study is demonstrated by high R2 values, 
with 0,9915 for compressive strength and 0,9921 for 
flexural strength, indicating that the ANN model closely 
matches actual material performance. Additionally, error 
analysis confirms the model's remarkable accuracy in 
predicting real-world results. Furthermore, the research 
highlights the exceptional potential of the developed 
ANN model, which can effectively predict the 
mechanical properties of construction materials 
containing ESP. 
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1 Introduction 

The production of clinker-based binders (CBBs) and other building materials, particularly 
cementitious materials (CMs), has a significant impact on the environment [1]. Construction 
has seen rapid growth [2] due to urbanisation, leading to a substantial increase in the demand 
for CMs. Construction primarily involves three components: aggregates, cement, and water, 
combined to manufacture concrete. Cement plays a crucial role in construction [3-5]. 
Manufacturing CBBs is a highly energy-intensive process that produces large amounts of 
greenhouse gases, mainly carbon dioxide (CO2) [6]. The extraction of natural aggregates, 
another essential component, consumes significant energy and contributes to CO2 emissions. 
The combined impact of manufacturing concrete has adversely affected the environment and 
depleted natural resources [7], raising sustainability concerns. To address these environmental 
challenges and promote eco-friendly construction practices [8, 9], experts have focused on 
replacing CBBs and aggregates with alternative materials [10, 11]. Progressive efforts have 
therefore concentrated on exploring various alternative materials [12] to reduce the 
environmental burden associated with CMs. 
Previous studies have already explored and emphasised the potential of alternative aggregate 
and cement materials [13-15]. The objective is to identify environmentally friendly and 
economically viable substitutes suitable for widespread adoption. Integrating these alternatives 
can help the construction industry reduce its environmental impact and conserve natural 
resources [16,17]. 
Recycling construction waste materials offers a promising approach to reducing the 
requirement for fresh aggregates and CBBs, while also addressing environmental issues 
linked to waste disposal. Waste can be broadly categorised into two types: industrial waste 
and agricultural waste. Both have been extensively researched as potential substitutes for 
cement and aggregates. Industrial waste materials such as fly ash, silica fume, slag, and other 
additives have been found to enhance concrete performance while reducing production costs 
[18-21]. Similarly, agricultural waste has been investigated as a viable alternative to traditional 
building materials [22]. Studies have indicated that certain agricultural by-products possess 
suitable properties as substitutes in CBBs [23]. Utilising agricultural and industrial waste not 
only diminishes the demand for conventional materials but also aids in sustainable waste 
management and reduction. 
Several researchers have validated the use of agricultural and industrial waste materials for 
construction purposes [24-27]. This approach is suitable for waste management while 
promoting environmentally conscious building practices. However, a common challenge 
associated with utilising these waste materials is their insufficient calcium oxide (CaO) content, 
which can result in concrete with suboptimal strength [28]. Such issues are addressed using 
alternative materials, one of which is eggshell (ES), noted for its calcium abundance [29, 30]. 
In fact, eggshells have been utilised as a calcium source for synthesising calcium phosphates 
since 1999 [31-37]. The scientific community and later the industry began incorporating 
eggshells for their calcium content [38]. 
Eggshell powder (ESP) possesses distinct chemical, physical, and mineralogical properties 
that distinguish it from traditional CBBs [39], offering innovative applications. A notable study 
by Hemalatha et al. (2016) [40] showcased the potential of eggshells by using them as a partial 
replacement for cement alongside high-volume fly ash (HVFA) to enhance concrete strength. 
Eggshells contain a significant amount of calcium carbonate (CaCO3), extracted from the shells 
and then incorporated into fly ash cement to expedite hydration [41-43]. Integrating eggshells 
into CMs serves a dual purpose: repurposing common bio-waste material while enhancing CM 
performance. The calcium-rich nature [44] of eggshells addresses calcium oxide deficiencies 
in other waste-based materials, ultimately improving concrete's structural integrity. 
The use of prediction models to assess the efficacy of materials and buildings is increasingly 
popular, aiming to reduce the need for repetitive and time-consuming laboratory trials. These 
models mainly employ regression-based methods to estimate construction material properties. 
Notably, machine learning (ML) techniques [45, 46] have emerged as key contributors to the 
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advancement of these models. Artificial neural network methods, in particular, play a significant 
role in forecasting construction material performance. By analysing vast datasets, these 
techniques identify patterns and relationships, enabling the creation of accurate and efficient 
models [19]. 
Extensive research into the viability of incorporating ESP [47] in the building industry has been 
undertaken on a large scale despite the absence of formal endorsements within regulatory 
codes of conduct. However, critical literature studies reveal a noticeable gap concerning the 
development of comprehensive predictive models to forecast the mechanical properties of 
ESP concrete [48]. Despite extensive research in concrete technology and materials science, 
there is a lack of comprehensive investigations focusing on creating precise predictive models 
tailored to ESP concrete. The current study aims to address this gap by developing a predictive 
ANN model for determining ESP concrete's compressive and flexural strength. The 
methodology adopted in this endeavour utilizes Python, enabling researchers to preprocess 
data, build and train ANN models, and evaluate their performance efficiently. This study 
signifies a novel approach incorporating advanced computational techniques to enhance 
understanding and prediction capabilities in ESP concrete research. 
In this study, we thoroughly investigate the mechanical properties of concrete incorporating 
ESP. Our aim is to develop a predictive model for the compressive and flexural strength of 
ESP-replaced concrete. These two properties are chosen because they play a central role in 
determining the structural behaviour of concrete members. The researchers develop a 
machine learning model using input data and predict the output, representing a mechanical 
property. Error analysis compares the predicted data to experimental results, assessing the 
model's accuracy. Additionally, the researchers use various model performance parameters to 
quantitatively measure the effectiveness of the model in predicting concrete properties. 
This study focuses on predicting concrete strength sequentially. It encompasses descriptions 
of the materials and methodology employed and the generation of dataset points through 
experimental programs. Finally, the study compares the experimental and predicted outputs 
for both the training and testing phases of the model. 

2 Materials, methodology and data generation  

The study utilised ESP and PSC as its main materials. Its primary objective is to assess ESP's 
viability as a partial substitute for conventional cement in construction applications. The ESP 
(Figure 1) is procured as a ready-made product from INDIAMART. In experimental trials, this 
prefabricated ESP is used as a partial replacement for PSC. This method simplifies the testing 
procedure, employing the acquired ESP as an alternative material for PSC. 

 

Figure 1. ESP sample 

Table 1 provides a detailed breakdown of the chemical components present in ESP and PSC. 
This information typically includes the concentrations or percentages of various compounds 
such as calcium, magnesium, and other elements or compounds found in eggshells. Analysing 
these compositions is crucial for understanding ESP's potential uses of ESPs, such as 
construction materials. 
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Table 1. Chemical composition of eggshell and PSC 

Egg shell powder PSC 

Element/Compound Weight (%) Element/Compound Weight (%) 

CaCO3 96,48000 CaO 59,12 

S 1,77500 SiO2 20,41 

Mg 0,70000 Al2O3 7,05 

P 0,50450 MgO 3,77 

Al 0,36000 Fe2O3 3,24 

K 0,08390 SO3 4,15 

Sr 0,09585 Na2O 0,18 

Ca – Calcium; CO3 – Carbonate; S – Sulphur; Mg – Magnesium; P – Phosphorus; Al – Aluminium; 
K – Potassium; Sr – Strontium; Si- Silica; Fe- Iron; Na- Sodium. 

The scanning electron microscopy (SEM) was conducted on ESP specimens, and the findings 
are presented at varying magnifications in Figure 2.  In this case, it was employed to examine 
the ESP particles and their characteristics at different scales. 

 

Figure 2. Scanning electron microscopy (SEM) of Eggshell at different magnifications 

Figure 2 illustrates the SEM morphology of the ESP, which shows a heterogeneous surface 
with irregularities and pores at various magnifications. The micrographs show that the 
microstructures exhibit a distinctive nonuniform size distribution of particles and an irregularly 
shaped structure. This observation is consistent with the findings of previous study [49, 50]. 
Additionally, the microstructure revealed ample porosity, which may provide and enhance the 
contact area for catalysing the reactions. The irregular shape, nonuniform size distribution, and 
observed porosity of ESP particles may reduce the compressive strength when cement is 
replaced with ESP [51]. Moreover, an inconsistent morphology can affect the workability of the 
concrete mixture [52]. 
The PSC was systematically partially replaced by ESP in increments of 2,5 %, ranging from 0 
% to 20 %. Two crucial mechanical tests were performed to assess the influence of ESP on 
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the compressive and flexural strengths. In the experimental setup, the study involved casting 
concrete samples designed for compressive and flexural strength tests. Specifically, cubes 
(150 × 150 × 150 mm) were cast to assess compressive strength, and prism specimens (500 
× 100 × 100 mm) were used for flexural strength testing. 
A total of 144 cubes and 144 prisms were cast as data points. After casting, the specimens 
underwent a 24-hour curing period in moulds.  
A methodological approach was employed to produce specimens for eggshell concrete. 
Various components were utilised, including cement, ESP, coarse aggregate, river sand, and 
a water-binder mix. The process involved adding fluctuating amounts of cement and eggshell 
powder while maintaining a consistent amount of coarse aggregate, river sand, and an 
appropriate water-binder mix ratio. This systematic combination is aimed at achieving the 
desired properties and strengths of the resulting concrete. Table 2 lists the mix proportions, 
specifically for the creation of eggshell concrete, providing structured guidelines for a singular 
mix proportion. 

Table 2. Mix proportion of ESP concrete 

Mix Items Quantity 

binder 460,00 kg 

cement 425,50 kg 

fine aggregate 736,00 kg 

coarse aggregate 1242,00 kg 

ESP 7,50 % 

water-to-binder ratio  0,35 

The data generated through experimental programs is invaluable for machine learning (ML) 
applications. It is utilised to develop and validate ML models in this context. Specifically, an 
artificial neural network (ANN) [45, 49] was utilised for this study, integrated within the Python 
programming interface. The data was normalised and scaled using the standard scalar 
technique. To ensure the reliability of the ML model, a common practice is to split the available 
data into two portions: a training set and a testing set. In this case, 70 % of the data was 
allocated for training the model, with the remaining 30 % reserved for testing its performance.  
A feed-forward neural network [46, 48] operates by sequentially processing input data in a 
forward direction through its layers and neurons without forming cycles in connections. It 
comprises one input layer, one or more hidden layers, and one output layer. Each neuron is 
connected to neurons in the subsequent layer by weighted connections. During the 
feedforward process, input data is propagated through the network, and each neuron 
computes a weighted sum of its inputs, which is then transformed using an activation function. 
This output becomes the input for the next layer, and the process repeats until the final output 
layer is reached. The network is trained through a supervised learning process, adjusting the 
weights of connections based on the discrepancy between predicted and actual outputs, 
minimising a defined loss function. This training enables the network to learn complex 
mappings and make predictions on new, unseen data. A feed-forward ANN has been chosen 
because it is more suitable for structured data where the relationship between input features 
is not highly dependent on the order of the data points. 
The feedforward neural network architecture used in this study involves an input layer with five 
neurones representing the features or variables used as inputs to the network. These five 
inputs are related to the concrete mix characteristics that incorporate ESP and PSC. The input 
features included variables such as the fraction of PSC and ESP, coarse aggregate (CA), fine 
aggregate (FA), and water-to-binder ratio (w/b). Figure 3 illustrates the working process of this 
artificial neural network. Although the explanation is brief, it visually depicts data flow within 
the network. The input layer with five neurones receives the input values, which are then 
processed within the hidden layers of the network, although specific details regarding these 
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layers are not provided in the description section. Ultimately, the network produces two output 
values: the compressive and flexural strengths. 

 

Figure 3. ANN workflow architecture 

This separation enables an unbiased assessment of the model's predictive capabilities. Prior 
to using the data for machine learning (ML), a crucial step involves statistically analysing the 
dataset. This process entails examining various statistical measures, including mean, standard 
deviation, minimum, and maximum, to gain insights into the data's characteristics. Such 
analysis helps identify trends, patterns, and potential outliers, which are essential for making 
informed decisions during model development. The results of this statistical analysis are then 
presented in Table 3, providing a structured summary of the key findings. 

Table 3. The statical analysis of input and output parameters 

Parameter % ESP 
Binder 

(kg) 
CA 
(kg) 

FA 
(kg) 

w/b 
CS 

(MPa) 
FS 

(MPa) 

count 144 144 144 144 144 144 144 

mean 10 460 1242 736 0,43 26,58 2,45 

std. 6,55 0 0 0 0,06 6,89 0,65 

min. 0 460 1242 736 0,35 14,71 1,35 

25 % 5 460 1242 736 0,38 20,34 1,95 

50 % 10 460 1242 736 0,43 27,02 2,37 

75 % 15 460 1242 736 0,46 32,29 2,88 

max. 20 460 1242 736 0,50 39,21 3,89 

CA= Coarse Aggregate; FA= Fine Aggregate; CS & FS stands compressive strength and flexural 
strength of concrete respectively; Std. = standard deviation. 

Table 3 provides crucial insights into compressive and flexural strength. The analysis shows 
that the maximum compressive strength recorded is 39,21 MPa, representing the highest 
observed value, while the minimum is 14,71 MPa, indicating the lowest recorded strength. 
Likewise, for flexural strength, the maximum is 3,89 MPa, denoting the peak measurement, 
while the minimum is 1,35 MPa, signifying the lowest recorded value. These maximum and 
minimum values offer valuable insights into the dataset's variability and range of strengths. 
A correlation matrix visually represents statistical correlations, illustrating how various 
variables interact. The correlation coefficient gauges the strength and direction of the linear 
relationship between two variables. A correlation coefficient of 1 signifies a perfect positive 
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linear relationship, -1 denotes a perfect negative linear relationship, and 0 indicates no linear 
relationship. In this context, the focus lies in comprehending how different aspects of concrete 
composition impact compressive and flexural strengths. These variables may encompass the 
proportion of cement, ESP, FA, CA, w/b ratio, as well as compressive and flexural strength. 
Figure 4 presents a correlation matrix illustrating the relationships between compressive and 
flexural strength and different concrete parameters. The white colour in the matrix denotes a 
consistent value for coarse and fine aggregates. 

 

Figure 4. Correlation Matrix for CS and FS 

The Root Mean Squared Error (RMSE) is a crucial metric for evaluating the predictive accuracy 
of models, particularly in forecasting future data points. By calculating the RMSE, analysts gain 
insights into the average computational deviation between predicted and actual values. 
Enhanced models typically yield lower RMSE values, indicating superior predictive capabilities. 
The RMSE is computed using a formula (Eq. 1) that involves mean squared errors (MSE), 
quantifying the average squared discrepancy between estimated and true values. MSE, 
derived from squared errors, serves as the central measure of a model's precision (Eq. 2). This 
statistical tool facilitates the assessment of model performance, providing a standardized 
approach to evaluate its accuracy. In practice, analysts rely on RMSE to assess a model's 
reliability in making predictions on unseen data. 

𝑅𝑀𝑆𝐸 = √
∑ [𝑂𝐶𝑡 − 𝑃𝑐𝑡]2
𝑛
𝑖=1

𝑁
 (1) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑂𝐶𝑡 − 𝑃𝑐𝑡)

2

𝑛

𝑖=1

 (2) 

In predictive modelling, RMSE and MSE are metrics used to assess the accuracy of a model's 
predictions. Lower RMSE and MSE values indicate better performance, with values closer to 
zero suggesting higher accuracy. An RMSE or MSE value approaching zero indicates that the 
model's predictions closely match the actual values in the dataset. However, it is important to 
note that achieving exactly zero is often impractical due to inherent data variability and model 
limitations. Instead, the objective is to minimise RMSE and MSE as much as possible, aiming 
for values significantly smaller than the range of the target variable. 
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3 Results and discussions 

In this section, the study reveals its findings, centred on predictions of compressive and flexural 
strength. ANN was utilised to formulate and validate models for predicting these strengths. The 
ANN model for compressive strength underwent meticulous training and testing, as depicted 
in Figures 5a and 5b. Figure 5a illustrates the training phase, during which the model 
assimilated information from the dataset. Subsequently, in Figure 5b, the model's efficacy was 
evaluated through testing. Remarkably, the ANN model for compressive strength 
demonstrated impressive accuracy. The coefficient of determination (R2) assesses the model's 
conformity to the data. The findings reveal an R2 value of 0,9865 for the training phase, 
denoting an exceptionally close alignment between the predicted and actual compressive 
strength values during training. In the testing phase, the R2 value remains high at 0,9971, 
indicating the model's exceptional performance when confronted with new data. 

 

Figure 5. Relation between experimental and predicted compressive strength for (a) 
training and (b) testing 

 

Figure 6. Relation between experimental and predicted flexural strength for (a) training 
and (b) testing 

In the subsequent phase of the study, the researchers shifted their focus to predicting flexural 
strength. They utilised experimental data on flexural strength as inputs to train and test their 
ANN model. The ANN model, trained using the flexural strength data, was then evaluated for 
its performance using the R2 value, indicating how closely the model's predictions align with 

  

(a)                                                                                    (b) 1 

  

                                         (a)                                                                                            (b) 1 
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the actual flexural strength values. This evaluation process is illustrated in Figures 6(a) and 
6(b), depicting the model's behaviour during training and testing. The results of this phase are 
promising. The ANN model achieved an R2 value of 0,9864 during the training process, 
suggesting high accuracy in capturing the relationships within the flexural strength data during 
the model's learning phase. Moreover, when tested, the model maintained its impressive 
predictive capability, with an R2 value of 0,9912. 
In Figures 7 and 8 of the study, the researchers present their predictions for both 28-day 
compressive and flexural strength using ANNs. These predictions are based on data gathered 
from their experimental programme, specifically the compressive and flexural strength 
measurements. Figs. 7(a) and 7(b) focus on the 28-day compressive strength predictions. In 
Figure 7(a), the study illustrates the results of the ANN model during the training phase, where 
the model learns to make predictions based on the experimental compressive strength data. 
Figure 7(b) shows the testing phase, where the model's predictive performance is evaluated 
using new, unseen data. These figures contain visual representations illustrating the 
comparison between predicted and actual values regarding the 28-day compressive strength 
values. 

 

Figure 7. Comparative study of experimental and predicted compressive strength for 
(a) training and (b) testing 

 

Figure 8. Comparative study of experimental and predicted flexural strength for (a) 
training and (b) testing 

  

                                           (a)                                                                                               (b) 1 

  

                                          (a)                                                                                           (b) 1 
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Similarly, Figures 8(a) and 8(b) show the 28-day flexural strength predictions. Figure 8(a) 
depicts the behaviour of the model during the training process, in which it learns to predict the 
flexural strength based on the experimental flexural strength data. Figure 8(b) represents the 
testing phase, showing how well the model predictions aligned with the actual 28-day flexural 
strength values using data that were not previously encountered. The purpose of these figures 
is to visually convey the accuracy and performance of the ANN models in predicting the 
compressive and flexural strengths at the 28-day mark. Table 4 presents information 
describing the performance evaluation of a model predicting concrete's compressive and 
flexural strength. This assessment includes both training and testing phases, with results 
shown in the table. For the compressive strength model, R2 values for both training and testing 
are close to 1, indicating a very high level of accuracy in predicting compressive strength. The 
RMSE for training is 0,7741, representing the average prediction error, and the MAE is 0,4382. 
For testing, the RMSE is slightly higher at 0,7742, and the MAE is 0,605. These values suggest 
that the model performs exceptionally well in predicting compressive strength, with low errors 
in both phases. Similarly, for the flexural strength model, the R2 values are also close to 1 for 
both training and testing, indicating high accuracy. The RMSE for training is 0,037, which is 
very low, and the MAE is 0,0285. In the testing phase, the RMSE is slightly higher at 0,0756, 
and the MAE is 0,0591. These results suggest that the flexural strength model is also highly 
accurate, with very low prediction errors. 

Table 4. The model performance parameters evaluation for compressive and flexural 
strength in the training and testing phase 

Model performance 
parameters 

Compressive strength Flexural strength 

Training Testing Training Testing 

R2 0,9865 0,9971 0,9864 0,9912 

RMSE 0,7741 0,7742 0,0370 0,0756 

MAE 0,4382 0,6050 0,0285 0,0591 

The objective of our study has been successfully achieved by developing a predictive model 
showing a high R2 value of 0,9971. This outcome is consistent with the findings of a study 
conducted by Paruthi et al. (2023) [53], which also utilised ESP in concrete. In their research, 
they employed ANN to predict concrete strength and achieved an R2 value of 0,99. These 
results demonstrate the robustness and effectiveness of ANN models in predicting concrete 
properties when ESP is incorporated. 
The developed predictive model shows promise for future studies seeking to determine 
concrete strength under similar conditions. However, it is important to acknowledge the 
inherent limitations in such endeavours. Primarily, these studies require extensive datasets for 
training and testing the model. The effectiveness and accuracy of the model depend on the 
quantity and quality of the data points used for training. Therefore, future research should 
concentrate on collecting comprehensive datasets to improve the reliability and applicability of 
predictive models in concrete technology that incorporates novel materials like ESP. 
Drawing from both recent and past research, it is evident that cement replacement can be 
executed within the range of 5-15 %. Though this percentage might appear modest, viewed 
through the lens of waste management, such a practice proves environmentally advantageous. 
Therefore, ESP can be utilised for less critical tasks. 

4 Conclusions 

In this study, ESP is used as a partial substitute for PSC in concrete to evaluate its effect on 
compressive and flexural strength. Experimental programs are carried out to gather data on 
the performance of these mixtures. ANN is employed to predict the compressive and flexural 
strengths of concrete mixtures. Rigorous testing of the model is conducted, utilising 30 % of 
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the collected data to assess its accuracy and reliability. This testing phase entails comparing 
the model's predictions to the actual test results to ascertain their alignment. 
The model's performance is quantitatively assessed using the R2 value. For compressive and 
flexural strength, the R2 values are 0,9971 and 0,9912, respectively, indicating high accuracy 
in the model's predictions. The study's success is further supported by an error analysis, 
revealing that the predicted values closely align with the actual values, with a variation of less 
than 5 %. This suggests that the model effectively captures the behaviour of concrete mixtures 
with ESP as a partial substitute for PSC. In conclusion, the results of this study suggest that 
the developed soft computing model is a reliable tool for predicting the compressive and 
flexural strengths of concrete mixtures containing ESP as a partial replacement for PSC. Our 
aim was to create a predictive model with high accuracy, which we have achieved with an R2 
exceeding 0,9 and minimal errors. 
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