Data Mining as Support to Knowledge Management in Marketing
Keywords:
association rules, data mining, knowledge management, marketing, neural networksAbstract
Background: Previous research has shown success of data mining methods in marketing. However, their integration in a knowledge management system is still not investigated enough. Objectives: The purpose of this paper is to suggest an integration of two data mining techniques: neural networks and association rules in marketing modeling that could serve as an input to knowledge management and produce better marketing decisions. Methods/Approach: Association rules and artificial neural networks are combined in a data mining component to discover patterns and customers' profiles in frequent item purchases. The results of data mining are used in a web-based knowledge management component to trigger ideas for new marketing strategies. The model is tested by an experimental research. Results: The results show that the suggested model could be efficiently used to recognize patterns in shopping behaviour and generate new marketing strategies. Conclusions: The scientific contribution lies in proposing an integrative data mining approach that could present support to knowledge management. The research could be useful to marketing and retail managers in improving the process of their decision making, as well as to researchers in the area of marketing modelling. Future studies should include more samples and other data mining techniques in order to test the model generalization ability.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.