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Abstract. Glucose tolerance test (GTT) is standard diagnostic procedure that tests the efficiency of
blood glucose-lowering hormones (insulin, incretins, leptin). Contrary, insulin tolerance test (ITT) is
probing efficiency of blood glucose–rising hormones (glucagon, thyroxine, growth hormone, glucocorti-
coids, adrenalin, noradrenalin). These two hormone systems together maintain blood glucose levels in a
narrow range. Various pathophysiological mechanisms give rise to a reversible condition – prediabetes
which then progresses to an irreversible chronic disease – diabetes, both marked with deviation of blood
glucose levels outside the set range. In diagnostic purpose, the patient is given glucose load, and blood
glucose is measured right before and 2 hours after load. Measurements are more frequent after insulin
injection (ITT) or if both tests are performed on experimental animals. In this paper we analyse the
mathematical model for GTT and ITT. The obtained model function is an useful tool in describing
the dynamics of blood glucose changes.

Keywords: glucose tolerance test, insulin tolerance test, mathematical model, parameter identification

Received: April 04, 2020; accepted: June 12, 2020; available online: July 07, 2020

DOI: 10.17535/crorr.2020.0010

1. Introduction

Glucose and fatty acids are the main energy sources for various organs of a multicellular or-
ganism [6]. While fatty acids are used during fasting periods, sugar intake leads to glucose
burning [21]. Because some organs have no substantial energy store and preferentially use glu-
cose (brain, kidney), even during periods of fasting, blood glucose levels are maintained in a
narrow range [35]. The liver is responsible for normoglycemia (a blood glucose concentration
between 4.4 and 6.1 mm/L in fasting) [3] due to its ability to shift its metabolism in direction of
storing or producing glucose which is regulated by two hormones with opposite effect – insulin
and glucagon [28]. Generally, the body tolerates hyperglycemia (a blood glucose levels above
6.1 mm/L in fasting or above 11.1 mm/L 2 hours after meal) better than hypoglycemia (a
blood glucose concentration below 4.4 mm/L). Therefore, hyperglycemia is physiological after
meal and in stress conditions [34, 47], while hypoglycemia causes intense symptoms that can
progress to impairment of cognition and seizures [36]. The difference in tolerance of high and
low plasma glucose levels explains salient development of diabetes, which has led to epidemic
numbers of patients in developed countries. Estimated global number of diabetic patients in
2017 was more than 425 million people while further 352 million suffered from impaired glucose
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tolerance (prediabetes) and had high risk of developing diabetes [10]. In the USA alone, as high
as 1:3 adults suffer from prediabetes and only 10% is aware of its condition [11] while 70% of
them will develop diabetes over lifetime [45]. Global risk of prediabetes and diabetes is rising
due to epidemic of obesity [15, 29] and worldwide socioeconomic changes [44]. Early diagnosis
and treatment of prediabetes could reduce the incidence of diabetes.

Diagnosis of prediabetes and diabetes relies on fasting blood glucose (a blood glucose con-
centration measured after overnight fasting), plasma glucose concentration 2 hours (2hPG)
after load in oral glucose tolerance test (OGTT), and hemoglobin glycation (glucose bound
to hemoglobin) [4] – all three are static criteria that do not indicate the origin of the disease,
rather they reflect the general rise of glucose in blood. A fully developed clinical presentation of
the disease includes insulin resistance (unresponsiveness to insulin) of the liver, adipose tissue,
kidney and muscle along with a failure of β cells function (insulin secreting cells of pancreatic
islets) [17]. Pathophysiological explanation is built on gradual increase of insulin resistance
compensated by enhanced insulin secretion by β cells. Due to glucose toxicity, compensation
works till fasting glucose is around 5.5 mM [32, 33]. Further increase lead to net loss of pan-
creatic islets. Work on genetically modified animals fueled discovery of additional mechanisms
that contribute to development of hyperglycemia; increased secretion of insulin opposing hor-
mone glucagon, accelerated breakdown of lipids in fat cells, deficiency or resistance to incretins
(gastrointestinal tract hormones with augmenting effect on insulin secretion after meal), in-
creased renal glucose reabsorption, and development of central nervous system resistance to
leptin (gastrointestinal hormone which promotes satiety) and/or insulin [16]. Recently, altered
metabolic state, described as metabolic syndrome, was associated with hyperactive stress re-
sponse what was adding more on already long list of mechanisms contributing to hyperglycemia
[25]. It is very likely that prediabetes is a reversible condition that can be corrected with short-
term targeted therapy directed toward one or few mechanisms. In the absence of unambiguous
biomarkers to characterize metabolic disorder, OGTT may serve as an useful orientation. In
clinical practice, test is performed in only 2 steps – blood glucose is measured before loading and
2 hours after 75 g of glucose load [4]. Increased values at either or both steps are considered as a
sign of disease. In scientific research conducted on humans or animals, more measurements are
made after glucose load, and the blood glucose drop is monitored through 3 or even 4 hours [5].
The number of measurements and the number of experimental animals included in each group
made it possible to determine a mathematical model that describes the biological phenomenon
at the group level. In the medical literature (see e.g. [2, 13, 30]) one can usually find examples
of the use of the area under the curve (AUC) and the standard deviation of this surface.

A similar problem exists in performing an insulin tolerance test (ITT) – common test for
the stress response. The insulin bolus puts the body in a state of metabolic stress (poten-
tially life–threatening) due to hypoglycemia. Animals with elevated stress response have lower
glucose excursions due to opposing effect of stress hormones (glucocorticoids, adrenalin and
noradrenalin) [31]. Using AUC as a measure of imbalance can hinter early changes in stress
response.

Existing mathematical models that explain progression of diabetes are developed on some
of the following assumptions: glycemic excursions as a measure of metabolic instability [24, 42],
observation that hyperinsulinemia precedes hyperglycemia [23, 46], opposing effects of insulin-
glucagon on plasma glucose levels [1], glucose toxicity [18], gradual development of insulin
resistance [20], and threshold of glucose–insulin regulatory system [43].

We have chosen to use both tests, GTT and ITT, in order to model mechanisms involved in
the maintenance of plasma glucose levels. GTT test is probing mechanisms involved in lowering
glucose levels which involve hormones such as insulin, leptin and incretins. On the other hand,
ITT is probing mechanisms involved in increasing glucose levels and rely on hormones such as
glucagon, glucocorticoids, thyroid hormone, adrenaline and noradrenaline. We assume that a
precise description of blood glucose changes provoked by GTT and ITT is a good indicator of the
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development of prediabetes and we propose additional parameters that describe mathematical
model in detail. Usefulness of generated parameters should be further experimentally tested.

This paper is organized as follows. In the Section 2, a simple mathematical model of GTT
and ITT is introduced. In the Section 3, a corresponding parameter identification problem
is considered and in the Section 4 solutions of the corresponding differential equations are
analysed. Blood glucose levels in GTT are considered in the Section 5, where basic properties
and indicators and typical examples are given. In the Section 6 blood glucose levels in ITT are
considered with basic indicators and typical examples. Finally, some conclusions are given in
the Section 7.

2. A simple mathematical model of glucose and insulin tolerance test

Let us consider the concentration of glucose G in blood and the net normal hormonal concen-
tration H as a cumulative effect of all relevant hormones (for example, insulin decreases G,
while glucagon and cortisol increases G). A basic model can be written according to [9] as

∂G

∂t
= F1(G,H) + J(t) (1)

∂H

∂t
= F2(G,H). (2)

The function J is the external rate at which the blood glucose concentration is increased due
to adsorption rate. We assume that the quantities G i H attain optimal values G0 i H0 at a
point when the patient arrives to hospital on an empty stomach. Then

F1(G0, H0) = 0 and F2(G0, H0) = 0. (3)

Since we are interested in the deviation of G and H from their optimal values, let us introduce
the substitution

g = G−G0 and h = H −H0. (4)

Then

∂g

∂t
= F1(G0 + g,H0 + h) + J(t) (5)

∂h

∂t
= F2(G0 + g,H0 + h). (6)

By using Taylor’s theorem and (3) we obtain

∂g

∂t
=
∂F1(G0, H0)

∂G
g +

∂F1(G0, H0)

∂H
h+ J(t) (7)

∂h

∂t
=
∂F2(G0, H0)

∂G
g +

∂F2(G0, H0)

∂H
h. (8)

This system allows for signs of constants to be determined a priori, which brings us to the
following [9]:

∂g

∂t
= −m1g −m2h+ J(t) (9)

∂h

∂t
= −m3h+m4g, (10)

where m1, m2, m3 and m4 are positive constants.
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Since we normally have data about either G or H, the system (9)–(10) can be written for
that value. Let us show how the same can apply to quantity H. We will derive the equation
(10) by t and insert (9) into the obtained expression

∂2h

∂t2
= −m3

∂h

∂t
+m4

∂g

∂t

= −m3
∂h

∂t
+m4(−m1g −m2h+ J(t)).

After we replace m4g from (10), we obtain

∂2h

∂t2
+ (m1 +m3)

∂h

∂t
+ (m2m4 +m1m3)h = m4J(t). (11)

Since m1 +m3 > 0, we mark α :=
1

2
(m1 +m3) > 0, and since m2m4 +m1m3 > 0, we mark

ω2
0 := m2m4 +m1m3 > 0 and the equation (11) can be written as

∂2h

∂t2
+ 2α

∂h

∂t
+ ω2

0h = m4J(t). (12)

The function J is identical to zero except for the very short time interval in which the glucose
load is ingested and can be written by using Dirac δ–function.

Similarly, from (9)–(10) we can obtain

∂2g

∂t2
+ 2α

∂g

∂t
+ ω2

0g = m3J(t) +
∂J

∂t
. (13)

For simplicity, let us suppose that the t = 0 is the moment in which the glucose load has
been completely ingested. Then, for t ≥ 0, the functions g and h satisfy homogenous linear
differential equation of the second order

y′′ + 2αy′ + ω2
0y = 0, α, ω2

0 > 0. (14)

Because of the substitution (4), functions G and H satisfy linear differential equations of the
second order

G′′ + 2αG′ + ω2
0G = ω2

0G0, α, ω2
0 > 0, (15)

H ′′ + 2αH ′ + ω2
0H = ω2

0H0, α, ω2
0 > 0. (16)

3. Parameter identification

If experimental data (ti, Gi), i = 1, . . . ,m are known, where ti are time moments of measuring
the concentration of glucose Gi, we can solve the parameter identification problem

argmin
α>0,ω2

0>0,G0,µ,ν∈R
Φ(α, ω2

0 , G0, µ, ν), Φ(α, ω2
0 , µ, ν) =

m∑
i=1

(Gi − Ĝ(ti;α, ω
2
0 , G0, µ, ν))2, (17)

where Ĝ(ti;α, ω
2
0 , G0, µ, ν) are the values of the function Ĝ obtained by solving the Cauchy’s

problem
G′′ + 2αG′ + ω2

0G = ω2
0G0, G(0) = µ, G′(0) = ν. (18)

There are several methods for solving this problem. Let us mention smoothing the data
method [41], genetic algorithm [37], etc. In our paper we use Mathematica–module [48]
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NonlinearModelFit[]. This way we obtain a good approximation of parameters α, ω2
0 and

G0 in the differential equation (15) and optimal initial condition G(0) and G′(0) in the corre-
sponding Cauchy problem.

Similarly, by knowing experimental data (ti, Hi), i = 1, . . . ,m, we can also estimate pa-
rameters α, ω2

0 and H0 in the differential equation (16) and optimal initial condition H(0) and
H ′(0) in the corresponding Cauchy problem.

4. The solution of differential equations

By knowing parameters α, ω2
0 and G0 in the differential equation (15) and optimal initial con-

dition G(0) and G′(0), we are able to write the required function G as the solution to the
corresponding Cauchy problem, whereby the crucial role belongs to the corresponding charac-
teristic equation

r2 + 2αr + ω2
0 = 0, r ∈ C. (19)

We should make difference between the following cases:

D1: If α2 > ω2
0 , then the roots r1, r2 of the characteristic equation are negative and mutually

different real numbers denoted in a numerically stable form

r1 = −α−
√
α2 − ω2

0 , r2 =
−ω2

0

α+
√
α2 − ω2

0

, (20)

and the solution of the Cauchy problem for the differential equation (15) is obtained in
the form

G(t) = G0 + C1e
r1t + C2e

r2t, C1, C2 ∈ R. (21)

D2: If α2 = ω2
0 , the characteristic equation has a double negative root r = −α < 0, and the

solution of the Cauchy problem for the differential equation (15) is obtained in the form

G(t) = G0 + C1e
−αt + C2te

−αt, C1, C2 ∈ R. (22)

D3: If α2 < ω2
0 , the roots r1, r2 of the characteristic equation are conjugate complex numbers

r1 = −α− iω, r2 = −α+ iω, ω =
√
ω2
0 − α2 > 0, and the solution of the Cauchy problem

for the differential equation (15) is obtaied in the form

G(t) = G0 + e−αt(C1 cosωt+ C2 sinωt), C1, C2 ∈ R.

By introducing the corresponding integration constants A =
√
C2

1 + C2
2 , δ = arctan

C2

C1
instead of C1 i C2, the solution of the Cauchy problem for the differential equation can
be written in the form

G(t;A,α, ω, δ) = G0 +Ae−αt cos(ωt− δ). (23)

Remark 1. Since in case [D1] for roots (20) of the characteristic equation there holds

r1 + r2 = −2α, r2 − r1 = 2
√
α2 − ω2

0 ,

the corresponding Wronsky’s determinant

W [er1t, er2t] = e(r1+r2)t(r2 − r1) = 2e−2αt
√
α2 − ω2

0

can be a very small number, which can lead to a numerically unstable solution (21). Note also
that, in practical investigations, the case [D2] almost never arises. Therefore, this case is not
considered in the rest of the paper.
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The function G of the form (21) or (23), obtained by solving the corresponding Cauchy
problem, can be corrected by solving the corresponding nonlinear least squares problem [19, 26]
for the function F1 given by (24) (in case α2 > ω2

0), i.e. for the function F3 given by (25) (in
case α2 < ω2

0):

F1(G0, C1, C2, r1, r2) =

m∑
i=1

(G0 + C1e
r1ti + C2e

r2ti −Gi)2; (24)

F3(G0, α, ω, δ) =

m∑
i=1

(G0 +Ae−αti cos(ωti − δ)−Gi)2. (25)

5. Blood glucose levels in the glucose tolerance test

In the time t = 0 a certain amount of glucose is either injected into the patient’s blood or it
was administered orally and blood glucose is monitored for the next 4 hours.

5.1. The characteristics of the solution

Since α, ω2
0 > 0, for the obtained function G in both previously mentioned cases there holds

lim
t→+∞

G(t) = G0. (26)

The number G0 represents glucose concentration after a longer time interval upon glucose load
– conveniently, the time interval could be set to 120 minutes – a time point that is interesting
for the diagnosis of diabetes.

Also, in order to study the behavior of glucose concentration with certain patients, we will
use the following characteristics of the obtained function G:

1. Parameter α determines the rate of oscillation amplitude decline and ensures a gradual
decrease in blood glucose to G0 level;

2. In the case of conjugate complex roots of the characteristic equation (α2 < ω2
0) we can

also determine the basic period [T = 2π
ω ] of function G;

3. Glucose concentration at the beginning of the experiment G(0) in clinical or laboratory
setting equal to fasting glucose;

4. The initial speed of glucose increase after the initialization G′(0) – the reaction speed of
glucose lowering mechanisms.

5. Maximal glucose concentration Gmax or maximal hyperglycaemia achieved in individual
testing reflecting the sensitivity of glucose lowering mechanisms to recognize glucose rise.
Also, the moment tmax (in minutes) in which the maximum glucose concentration is
obtained is important – the reaction time of glucose lowering mechanisms. On the graph
of the function G, this is the point M = (tmax, Gmax).

6. Maximal speed of glucose concentration decrease G′(tI) is attained at the moment tI (in
minutes), where I = (tI , G(tI)) is the inflection point of the function G. Note also that
G′(tI) is a negative number because it represents the decrease of concentration. G(tI) and
tI are potential values describing the incretin effect and indicating the difference between
impairment of glucose tolerance and impairment of fasting glucose.

7. The area under the curve AUC =
∫ 4

0
G(t)dt represents the cumulative glucose load in a

tested period of time.
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Example 1. (Normoglycemia) For α = 4.5 and ω2
0 = 25, the parameter ω =

√
ω2
0 − α2 =

2.179 > 0 is determined. Because α2 < ω2
0, with G0 = 100 and initial conditions: G(0) = 70,

G′(0) = 4000, the mathematical model (15) determines the model-function of the form (23)

GN (t) = 100 + 1773.64 e−4.5 t cos(2.179 t− 1.554).

The graph of this model–function is shown on Figure 1 and their properties are presented in
Table 1.

Example 2. (Prediabetes) For α = 2.5 and ω2
0 = 8, the parameter ω =

√
ω2
0 − α2 =

1.323 > 0 is determined. Because α2 < ω2
0, with G0 = 150 and initial conditions: G(0) = 100,

G′(0) = 2500, the mathematical model (15) determines the model-function of the form (23)

GP (t) = 150 + 1796.03 e−2.5 t cos(1.323 t− 1.554).

The graph of this model–function is shown on Figure 2 and their properties are presented in
Table 2.

Example 3. (Diabetes) For α = 1.5 and ω2
0 = 3.3, the parameter ω =

√
ω2
0 − α2 = 1.0247 is

determined. Because α2 < ω2
0, with G0 = 250 and initial conditions: G(0) = 100, G′(0) = 1800,

the mathematical model (15) determines the model–function of the form (23)

GD(t) = 250 + 1544.34 e−1.5 t cos(1.025 t− 1.473).

The graph of this model–function is shown on Figure 1 and their properties are presented in
Table 1.

Properties α T G(0) G0 G′(0) Gmax tmax G′(tI) tI AUC

Normoglycemia 4.5 2.9 70 100 4000 394.2 12.9 -579.7 24 549.2
Prediabetes 2.5 4.7 100 150 2500 467.7 23.3 -358.2 48 881.3
Diabetes 1.5 6.1 100 250 1800 564.2 40.8 -237.4 78 1411.2

Table 1: Properties of GTT model–functions. Progression toward diabetes is accompanied by
increase in T , Gmax, tmax and tI (T measured in hours, tmax and tI in minutes) as well as

lowering of α, G′(0) and G′(tI)

The mathematical model reveals that progression toward diabetes is accompanied by rise
in T , Gmax, tmax and tI as well as lowering of α, G′(0) and G′(tI). Note that the glucose
concentration in normoglycemia decreases the fastest and the decrease happens in shorter time.
In diabetes, the glucose concentration decreases the slowest and the decrease happens in longer
time. Progression from prediabetes to diabetes is characterized by previously described rise in
parameters G(0) and G0, both relevant for clinical practice. Also, the accompanying rise in
AUC is well described in human and animal studies of diabetes. What is not yet described are
parameters α, T , Gmax, tmax, tI , G

′(0) and G′(tI). Further experimental studies are needed to
determine whether any of the newly identified parameters is a more sensitive predictor of the
onset of diabetes than existing biomarkers.

6. Blood glucose levels in the insulin tolerance test

At the time point t = 0, 0.1− 0.15 U/kg of insulin is injected into the patient’s blood and the
level of glucose in blood is observed within the next 4 hours.
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0 1 2 3 4

100

200

300

400

500

600

Normoglycemia

Prediabetes

Diabetes

MD

MP

MN

ID

IP
IN

GD

GP

GN

Figure 1: GTT model–functions in the case of normoglycemia MN = (13, 394), IN = (24, 321);
prediabetes MP = (23, 468), IP = (48, 358) and diabetes MD = (41, 564), ID = (78, 457) –

abscissa of each point is in minutes.

Similarly, by knowing experimental data (ti, Gi), i = 1, . . . ,m, we can solve the corre-
sponding parameter identification problem (17), obtain the parameter values α, ω2

0 and G0 and
estimate the initial conditions G(0) and G′(0).

The solution of the Cauchy problem for differential equation (15) with obtained initial
conditions depends on the roots of the corresponding characteristic equation (19) and we should
also differentiate between the three cases previously mentioned.

6.1. The characteristics of the solution

Since α, ω2
0 > 0, for solving the equation (15) in all the previously mentioned cases there holds

lim
t→+∞

G(t) = G0. (27)

The number G0 represents glucose concentration after a longer time interval upon insulin
injection – in experimental protocol glucose concentration is conventionally taken up to 60, 90
or 120 minutes, but in clinical setting, the last measurement is done after 120 minutes – same
as in the case of GTT.

Also, in order to study the behavior of glucose concentration, we will use the following
characteristics of the obtained function G:

1. Parameter α determines the speed of oscillation amplitude decrease and provides a trend
of glucose increase till the level G0;

2. In the case of conjugate complex roots of the characteristic equation, we can also determine

the basic period T =
2π

ω
of function G (in hours);

3. Glucose concentration G(0) at the beginning of the experiment;

4. The initial speed of glucose decrease G′(0) after the initialization of testing (negative
number);

5. The minimal glucose concentration G(tmin) and the moment tmin (in minutes) in which
the minimal glucose concentration is achieved;

6. The maximal speed of glucose concentration increase G′(tI) and the moment tI (in min-
utes) in which the maximal speed of glucose concentration is achieved;

7. The area under curve AUC=
∫ 4

0
G(t)dt shows cumulative glucose load in the tested period

of time.
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Example 4. (Normal stress response) For α = 0.5 and ω2
0 = 1.5, the parameter ω =√

ω2
0 − α2 = 1.12 > 0 is determined. Because α2 < ω2

0, with G0 = 80 and initial conditions:
G(0) = 100, G′(0) = −100, the mathematical model (15) determines the model–function of the
form (23)

GN (t) = 80 + 82.95e−0.5 t cos(1.12 t− 1.33).

The graph of this model–function is shown on Figure 2 and their properties are presented in
Table 2.

Example 5. (Enhanced stress response) For α = 0.8 and ω2
0 = 1.5, the parameter ω =√

ω2
0 − α2 = 0.93 > 0 is determined. Because α2 < ω2

0, with G0 = 120 and initial conditions:
G(0) = 100, G′(0) = −100, the mathematical model (15) determines the model-function of the
form (23)

GE(t) = 120 + 126.68e−0.8 t cos(0.927 t+ 1.412).

The graph of this model–function is shown on Figure 2 and their properties are presented in
Table 2.

Properties α T G(0) G0 G′(0) Gmin tmin G′(tI) tI AUC

Normal stress
response 0.5 5.6 10. 80 -100 39.4 74.8 29.7 138 586.2
Enhanced stress
response 0.8 6.8 100 120 -100 67.6 45.3 30.6 102 872.1

Table 2: Properties of ITT model–functions. Newly identified parameters α, T , Gmin, tmin
and tI are potential markers of the enhanced stress response

(T measured in hours, tmin and tI in minutes)

0 2 4 6 8
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Figure 2: ITT model–functions in the case of normal MN = (75, 39), IN = (138, 61) and
enhanced stress response ME = (45, 68), IE = (102, 88) – abscissa of each point is in minutes

Note that the speed of glucose level increase in both cases is around 30, but, with normal
stress response, the moment of maximal increase is slightly prolonged. On the other hand,
parameters α, T , G0 and Gmin are increased in the enhanced stress response, while tmin,
G′(tI) and tI are decreased. Experimental studies will show whether some of them are good
biomarkers of changes in a stress response.

7. Conclusions

Using hypothetical data and real–life examples of GTT and ITT curves from the literature
[8, 14, 22, 40], we have developed a mathematical model that describes changes in blood glucose
concentrations challenged by glucose load or insulin bolus. The following indicators describe
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characteristics of the mathematical model based on the set of data: parameter α, basic period
T , glucose concentration at the beginning of the experiment G(0), glucose concentration after
a longer time interval upon glucose load G0, the initial speed of glucose increase/decrease
after the initialization G′(0), maximum/minimum glucose concentration Gmax/Gmin and the
corresponding time-moment, maximal speed of glucose concentration decrease/increase G′(tI)
and the corresponding time-moment and the area under curve AUC. The indicators G(0), G0

and AUC correspond to commonly used measures of risk for prediabetes and diabetes in humans
or experimental animals (fasting glucose, 2hPG and AUC under the GTT or ITT curve), but
plotted or extracted from the model. The indicators Gmax/Gmin and the corresponding time-
moment describe glucose excursion in one cycle. The glucose excursion is recognized as a
cardiovascular risk [38] which should be attenuated by pharmacological intervention [27, 39].
There are two additional parameters: G′(0), which describes the rate of increase/decrease to
Gmax/Gmin, and G′(tI), which describes the rate of decrease/increase towards G0 at the point
(tI , G(tI)). We hypothesize that the pharmacological intervention can be better described by
the previously mentioned four parameters instead just by AUC, to which the fifth parameter
tI can be added.

The basic period T and parameter α have not been used so far to describe changes in
blood glucose concentration. Given that glucose-regulating hormones are secreted in cycles,
we think it is correct to present changes in blood glucose concentration by a function that
stabilizes around its asymptote. The parameter α determines the ”quenching rate” around the
asymptote. In practical terms, T and α can be seen as indicators of metabolic flexibility. Given
that rapidly extinguished functions have higher values of α, it is assumed that α is smaller in
state with pathological changes especially in the case of GTT test. Let’s say that α is higher for
healthy young people than for old people. It is to be expected that after a metabolic challenge
a healthy young individual quickly returns to baseline, i.e. all fluctuations are within a smaller
range. The opposite is true for indicator T – an increase in its value is associated with a greater
likelihood of pathological change.

This model was built thanks to a standardized clinical protocol for testing glucose metabolism.
Glucose load is an idealized meal without the admixture of other categories of foods – fats, pro-
teins and fibers – and it is not common outside the diagnostic frame. If mixed meals were
used in the test, the glucose excursions would be much less [12]. Also, both tests, GTT and
ITT, are performed after overnight fasting which further contributes to their standardization
– i.e. glucose is readily absorbed in digestive tract after oral glucose administration and glu-
coneogenesis (production of glucose by liver) is undisturbed by digestion after insulin bolus.
Mathematical models that seek to monitor changes in blood glucose concentrations after mixed
meal tolerance test [7] have to take into account interference from fat and protein metabolism
and rather chaotic circumstances of digestion rate. We assume that the basic mathematical
model for monitoring glucose metabolism in the future will be upgraded with models for at
least these two additional metabolisms.

A potential weakness of our mathematical model is that we did not recognize which param-
eter would describe the variability among the experimentally obtained real data which could
be a substitute for statistical significance. Nevertheless, we hypothesize that this model could
facilitate the comparison of the results from different studies, especially those concerning drug
efficacy.
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[15] Chobot, A., Górowska–Kowolik, K., Sokolowska, M. and Jarosz–Chobot, P. (2018). Obesity and
diabetes-not only a simple link between two epidemics. Diabetes/Metabolism Research and Re-
views, 34(7), e3042(1–9). doi: 10.1002/dmrr.3042

[16] De Fronzo, R. A. (2009). From the triumvirate to the ominous octet: A new paradigm for the
treatment of type 2 diabetes mellitus. Diabetes, 58(4), 773–795. doi: 10.2337/db09-9028

[17] De Fronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F.
B.,Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A. and Weiss, R. (2015).
Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(1). doi: 10.1038/nrdp.2015.19

[18] De Gaetano, A., Hardy, T., Beck, B., Abu–Raddad, E., Palumbo, P., Bue–Valleskey, J. and Pork-
sen, N. (2008). Mathematical models of diabetes progression. American Journal of Physiology–
Endocrinology and Metabolism, 295(6), E1462–E1479. doi: 10.1152/ajpendo.90444.2008

[19] Dennis, J. E. and Schnabel, R. B. (1996). Numerical methods for unconstrained optimization and
nonlinear equations. Philadelphia: SIAM (Society for Industrial and Applied Mathematics). doi:

https://doi.org/10.1080/23737867.2018.1429332
https://doi.org/10.2337/diacare.18.2.245
http://journal.diabetes.org/clinicaldiabetes/v18n22000/pg69.htm
https://doi.org/10.2337/dc10-s062
https://doi.org/10.1242/dmm.006239
https://doi.org/10.2337/dc12-0836
https://doi.org/10.1530/joe-14-0182https://doi.org/10.1530/joe-14-0182
https://doi.org/10.1007/978-1-4612-4360-1
https://doi.org/10.1007/978-1-4612-4360-1
http://www.diabetesatlas.org
https://www.cdc.gov/diabetes/data/statistics/statistics-report.html
https://www.cdc.gov/diabetes/data/statistics/statistics-report.html
https://doi.org/10.2337/diab.30.6.465
https://doi.org/10.15761/iod.1000212
https://doi.org/10.1186/s12902-019-0446-4
https://doi.org/10.1002/dmrr.3042
https://doi.org/10.2337/db09-9028
https://doi.org/10.1038/nrdp.2015.19
https://doi.org/10.1152/ajpendo.90444.2008
https://doi.org/10.1137/1.9781611971200


132 Marija Heffer, Vedrana Ivić and Rudolf Scitovski
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