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Abstract. Neutrosophic set is considered as a generalized of crisp set, fuzzy set, and intuitionistic
fuzzy set for representing the uncertainty, inconsistency, and incomplete knowledge about the real
world problems. In this paper, a neutrosophic linear programming (NLP) problem with single-valued
trapezoidal neutrosophic numbers is formulated and solved. A new method based on the so-called score
function to find the neutrosophic optimal solution of fully neutrosophic linear programming (FNLP)
problem is proposed. This method is more flexible than the linear programming (LP) problem, where
it allows the decision maker to choose the preference he is willing to take. A stock portfolio problem is
introduced as an application. Also, a numerical example is given to illustrate the utility and practically
of the method.
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1. Introduction

Linear programming (LP) is an important tool used by decision maker (DM). This is applied
frequently in real–world applicable problems. In spite of having a vast decision making expe-
rience, the decision maker cannot always articulate the goals precisely. Decision-making in a
fuzzy environment, developed by Bellman and Zadeh [4] improved and a great help in the man-
agement decision problems. The fuzzy set theory and its applications and fuzzy programming
with several objective functions were proposed by Zimmermann [47]. Many researchers adopted
this concept for solving fuzzy linear programming (FLP) problems like Campos & Verdegay [6],
Ebrahimnejad et al. [10], and Ganesan & Veeramani [12]

Fuzzy linear programming (FLP) is LP in which the parameters or decision variables are
represented by fuzzy numbers. Tanaka et al. [38] and Zimmermann [47] are the pioneers of FLP.
Many approaches for FLP problem have taken in consideration [5, 19, 26, 28, 29, 35, 43, 44, 46].
Khalifa et al. [23] studied the neutrosophic complex programming problem, and determined its
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optimal solution by using lexicographic order. There are several ways for solving this problem
[2, 8, 11, 14, 15, 17, 2, 25, 33, 34, 36, 37].

Portfolio selection (PS) problem is equivalent to the investor selecting the optimal portfolio
from a set of possible portfolios Also, it focuses on the optimal allocation of one’s wealth to
obtain maximum profitable return under minimum risk control as discussed by Gao and Liu
[13]. Markowitz [30] was the pioneer of the Modern Portfolio Theory. Gao and Liu [13] based
on the theory of uncertainty to develop a risk-free protection index model for PS. Liu and
Qin [27] investigated a mean semi-absolute deviation model for uncertain. Zhu [45] developed
a mean semi-absolute deviation model for uncertain PS. A portfolio-adjusting problem was
proposed by Huang and Ying [16]. Dutta and Kumar [9] presented an application of fuzzy
goal programming approach to multi objective linear fractional inventory model. Kumar [24]
studied an inventory model following the concept of salvage value to determine the optimal
inventory policy. Prameela and Kumar [32] studied the single transmit fuzzy queuing model
with two-classes by using ranking technique.

A generalization of the intuitionistic set, classical set, fuzzy set, paraconsistent set, di-
aletheist set, paradoxist set, tautological set based on neutrosophy. Neutrosophic theory was
introduced by Smarandache as a tool to handle undetermined information. Hussein et al. [18]
studied a neutrosophic LP problem, where they converted the neutrosophic model into the
corresponding crisp based on the neutrosophic set parameters. Abdel- Basset et al. [1] intro-
duced a technique for solving Lp problem with all of parameters represented by trapezoidal
neutrosophic numbers. Nafei et al. [31] studied fully neutrosophic LP problem, where all the
parameters are represented by triangular interval- valued neutrosophic numbers. They used
the ranking function to convert the neutrosophic model into its crisp one, and then applied
the standard methods for obtaining the solution. Darehmiraki [7] developed a new ranking
method for solving the LP problem involving neutrosophic numbers in all the coefficients of the
objective function and constraints.

Portfolio investment (PI) is quoted securities investment, a narrow sense of investment. It
refers to the behavior that an enterprise or individual buys negotiable securities such accumu-
lated money to earn profits. Wang et al. [40] studied the single valued sets in neutrosophic
environment. Portfolio investment is mainly composed of three elements: income, risk and time
as described by Yin [41].

This paper attempts to formulate and solve the linear programming (LP) problem in a
neutrosophic environment. The problem is considered by incorporating for single valued trape-
zoidal neutrosophic number. A new method to find the neutrosophic optimal solution of FNLP
problem is proposed.

The outlay of the paper is organized as follows: In Section 2 basic concepts and results
related to fuzzy numbers, trapezoidal fuzzy numbers, intuitionistic trapezoidal fuzzy numbers,
and neutrosophic set are recalled. In Section 3, fully neutrosophic linear programming (FNLP)
problem is formulated and a solution method for obtaining the solution is introduced. Section
4 introduces a stock portfolio problem as an application and two examples for illustration are
presented. Finally, some concluding remarks are reported in Section 5.

2. Preliminaries

In order to discuss our problem conveniently, basic concepts and results related to fuzzy
numbers, trapezoidal fuzzy numbers, intuitionistic trapezoidal fuzzy numbers, and neutrosophic
set are recalled.

Definition 1 (Zadeh [42]). A fuzzy set Ã defined on the set of real numbers < is said to be
fuzzy number, if its membership function µÃ : < → [0, 1] hs the following properties:

(i) Ã is an upper semi-continuous membership function;
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(ii) Ã is convex,i. e., µÃ(λx+ (1− λ)) ≥ min{µÃ(x), µÃ(y)}, λ ∈ [0, 1], for all x, y ∈ <;

(iii) Ã is normal, i. e., there exists x0 ∈ < for which µÃ(x0) = 1;

(iv) Supp(Ã) = {x ∈ < : µÃ(x) > 0} is the support of the Ã, and its closure cl(supp(Ã) is
compact set.

Definition 2 (Kaufmann and Guta [21]). A fuzzy number Ã(a1, a2, a3, a4) on < is a trapezoidal
fuzzy number if its membership function µÃ(x) : < → [0, 1] has the following characteristics set:

µÃ(x) =


x−a1
a2−a1 , a1 ≤ x ≤ a2;

1, a2 ≤ x ≤ a3;
a4−x
a4−aL3 a3 ≤ x ≤ a4;

0, elsewhere.

Definition 3 (Atanassov [3]). Let M be a nonempty set. An intuitionistic fuzzy set ÃI of M is
defined as ÃI = {〈x, ϑÃI

(x), ρÃI
(x) : x ∈ X〉}, where ϑÃI

(x) and ρÃI
(x) are membership and

nonmembership function, respectively such that ϑÃI
(x), ρÃI

(x) : M → [0, 1] and 0 < ϑÃI
(x) +

ρÃI
(x) ≤ 1, for all x ∈M .

Definition 4 (Atanassov [3]). An intuitionistic fuzzy subset ÃI = {〈x, ϑÃI
(x) : x ∈ M〉} of <

is called an intuitionistic fuzzy number if the following conditions hold:

(i) There exists m ∈ < such that ϑÃI
(m) = 1, and ρÃI

(m) = 0,

(ii) ϑÃI
is continuous function from < → [0, 1] such that 0 ≤ ϑÃI

(x)+ρÃI
≤ 1, for all x ∈M ,

and

(iii) The membership and non-membership functions of ÃI are:

ϑÃI
(x) =


0, −∞ < x <∞;

h(x), a1 ≤ x ≤ a2;

l(x) a2 ≤ x ≤ a3;

0, a3 ≤ x <∞.

ρÃI
(x) =


0, −∞ < x ≤ a◦1;

h∗(x), a◦1 ≤ x ≤ a2;

l∗(x) a2 ≤ x ≤ a◦3;

0, a◦3 ≤ x <∞.

where, h, h∗, l, l∗ are functions from < → [0, 1], h, and l∗ are strictly increasing functions,
and l, and h∗ are strictly decreasing functions with 0 ≤ h(x) + h∗(x) ≤ 1, and 0 ≤
l(x) + l∗(x) ≤ 1.

Definition 5 (Jianqiang and Zhong [20]). A trapezoidal intuitionistic fuzzy number is denoted
by ÃIT = 〈(a1, a2, a3, a4), (a◦1, a2, a3, a

◦
4)〉, where a◦1 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a◦4, with membership

and non-membership functions are:

ϑÃIT
(x) =


x−a1
a2−a1 , a1 ≤ x ≤ a2;
a4−x
a4−a3 , a3 ≤ x ≤ a4;

0, elsewhere.
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ρÃIT
(x) =


a2−x
a2−a◦1

, a◦1 ≤ x ≤ a2;
x−a3
a◦4−a3

, a3 ≤ x ≤ a◦4;

1, elsewhere.

Definition 6 (Smarandache [36]). Let M be a nonempty set. A neutrosophic defined as:

ĀN = {〈x, PĀN (x), QĀN (x), TĀN (x)〉 : x ∈M,PĀN (x), QĀN (x), TĀN (x) ∈]−0, 1+[},

where PĀN (x), QĀN (x), and TĀN (x) are truth, indeterminacy, and falsity membership func-
tions, respectively, and there is no restriction on the summation of them, so −0 ≤ PĀN (x) +
QĀN (x) + TĀN (x) ≤ 3+ and ]−0, 1+[ is nonstandard unit interval.

Definition 7 (Wang et al. [40]). Let M be a nonempty set. The single valued neutrosophic set
ĀNSV of X is defined as:

ĀNSV = {〈x, PĀN (x), QĀN (x), TĀN (x)〉 : x ∈M},

where PĀN (x), QĀN (x), and TĀN (x) ∈ [0, 1], for each x ∈ M and 0 ≤ PĀN (x) + QĀN (x) +
TĀN (x) ≤ 3.

Definition 8 (Thamaraiselvi and Santhi [39]). Let ξã, ψã, ζã ∈ [0, 1], and a1, a2, a3, a4 ∈ |re
such that a1 ≤ a2 ≤ a3 ≤ a4. The single valued trapezoidal neutrosophic number (SVTRN)
denoted by ãN = 〈(a1, a2, a3, a4); ξã, ψã, ζã〉 is a special neutrosophic set on the real numbers <,
whose truth, indeterminacy, and falsity membership functions are:

ϑã(x) =


ξã
(
x−a1
a2−a1

)
, a1 ≤ x ≤ a2;

ξã, a2 ≤ x ≤ a3;

ξã
(
a4−x
a4−a3

)
, a3 ≤ x ≤ a4;

0, elsewhere.

ρã(x) =


a2−x+ψã(x−a1)

a2−a1 , a1 ≤ x ≤ a2;

ψã, a2 ≤ x ≤ a3;
x−a3+ψã(a4−x)

a4−a3 , a3 ≤ x ≤ a4;

1, elsewhere.

πã(x) =


a2−x+ζã(x−a1)

a2−a1 , a1 ≤ x ≤ a2;

ζã, a2 ≤ x ≤ a3;
x−a3+ζã(a4−x)

a4−a3 , a3 ≤ x ≤ a4;

1, elsewhere.

where, ξã, ψã and ζã are the maximum truth, minimum indeterminacy, and minimum fal-
sity membership degrees, respectively. A single valued trapezoidal neutrosophic number ãN =
〈(a1, a2, a3, a4); ξã, ψã, ζã〉 may be expressed on ill-defined quantity about a, which is approxi-
mately equal to [a2, a3].

Definition 9 (Thamaraiselvi and Santhi [39]). Let ãN = 〈(a1, a2, a3, a4), ξã, ψã, ζã〈, and b̃N =
〈(b1, b2, b3, b4), ξb̃, ψb̃, ζb̃〈, be two single valued trapezoidal neutrosophic numbers and c 6= 0, then

(1) ãN (+)b̃N = 〈(a1 + b1, a2 + b2, a3 + b3, a4 + b4); ξã ∧ ξb̃, ψã ∨ ψb̃, ζã ∨ ζb̃〉,
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(2) ãN (−)b̃N = 〈(a1 − b4, a2 − b3, a3 − b2, a4 − b1); ξã ∧ ξb̃, ψã ∨ ψb̃, ζã ∨ ζb̃〉,

(3) ãN ⊗ b̃N =


〈(a1b1, a2b2, a3b3, a4b4); ξã ∧ ξb̃, ψã ∨ ψb̃, ζã ∨ ζb̃〉, a4 > 0, b4 > 0,

〈(a1b4, a2b3, a3b2, a4b1); ξã ∧ ξb̃, ψã ∨ ψb̃, ζã ∨ ζb̃〉, a4 < 0, b4 > 0,

〈(a4b4, a3b3, a2b2, a1b1); ξã ∧ ξb̃, ψã ∨ ψb̃, ζã ∨ ζb̃〉, a4 < 0, b4 < 0,

(4) ãN

b̃N
=


〈(a1/b4, a2/b3, a3/b2, a4/b1); ξã ∧ ξb̃, ψã ∨ ψb̃, ζã ∨ ζb̃〉, a4 > 0, b4 > 0,

〈(a4/b4, a3/b3, a2/b2, a1/b1); ξã ∧ ξb̃, ψã ∨ ψb̃, ζã ∨ ζb̃〉, a4 < 0, b4 > 0,

〈(a4/b1, a3/b2, a2/b3, a1/b4); ξã ∧ ξb̃, ψã ∨ ψb̃, ζã ∨ ζb̃〉, a4 < 0, b4 < 0,

(5) cãN =

{
〈(ca1, c2, ca3, ca4); ξã, ψã, ζã〉, c > 0,

〈(ca4, c3, ca2, ca1); ξã, ψã, ζã〉, c > 0,

(6) ãN−1 = 〈
(

1
a4
, 1
a3
, 1
a2
, 1
a1

)
〉; ξã, ψã, ζã, ãN 6= 0.

Definition 10. The order relation between two SVTRN numbers is defined as follows:

〈(a1, a2, a3, a4); ξq̃N , ψq̃N , ζq̃N 〉(=,≥,≤)b̃N = 〈(b1, b2, b3, b4); ξq̃N , ψq̃N , ζq̃N 〉

if and only if

a1

=
≤
≥

 b1, a2

=
≤
≥

 b2, a3

=
≤
≥

 b3, a4

=
≤
≥

 b4,

.

Definition 11. Let ãN = 〈(a1, a2, a3, a4); ξã, ψã, ζã〉 be a SVTRN number. Then we define:

(i) Score function

S(ãN ) = (1/16) ∗ (a1 + a2 + a3 + a4) ∗ (ϑã + (1− ρã) + (1− πã)),

(ii) Accuracy function

B(ãN ) = (1/16) ∗ (a1 + a2 + a3 + a4) ∗ (ϑã + (1− ρã) + (1 + πã)),

Definition 12. Let ãN , b̃N be any two SVTRN numbers. Then we have:

(i) If S(ãN < (b̃N ), then ãN < b̃N ,

(ii) If S(ãN ) = Sb̃N , and if

(1) B(ãN ) < B(̃bN ) then ãN < b̃N ,

(2) B(ãN ) > B(b̃N ) then ãN > b̃N ,

(3) B(ãN ) = B(b̃N ) then ãN = b̃N ,
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3. Problem formulation and solution concepts

A fully neutrosophic linear programming (FNLP) problem with m neutrosophic equality
constraints and n neutrosophic variables may be formulated as:

Maximize (or Minimize)Z̃N = C̃N ⊗ X̃N ;

subject to (1)

ÃN ⊗ X̃N = B̃N ,

where X̃N is a non-negative SVTRN number,X̃N = (x̃Nj )n×1, ÃN = (ãNij )m×n, B̃N = (b̃Ni )n×1,

and c̃Nj , x̃
N
j , ã

N
ij , b̃

N
i ∈ F (R).

Here, F (R) is the set of all single valued trapezoidal neutrosophic numbers.

Definition 13. The Points x̃Nj which satisfies the condition in problem (1) is called a neutro-
sophic optimization solution of problem (1).

Now, in order to solve the problem (1), let us introduce, a new method to find the neutro-
sophic optimal slution of FNLP problem in the following steps:

Step 1: Substitutign C̃N = (c̃Nj )1×n, X̃
N = (x̃Nj )1×n, Ã

N = (ãNij )m×n, B̃
N = (b̃Ni )m×n,, the

prolbem (1) may be written as:

Maximize (or Minimize)Z̃N =

n∑
j=1

c̃Nj ⊗ x̃Nj ;

subject to (2)
n∑
j=1

ãNij ⊗ x̃Nj = b̃Ni , i = 1, 2, ...,m,

where x̃Nj is a non-negative SVTRN number.

Step 2: Represent all parameters c̃Nj , x̃
N
j , ã

N
ij , and b̃Ni by the SVTRN numbers 〈(pj , qj , rj , sj);

αc̃Nj , βc̃Nj , δc̃Nj 〉, 〈(xj , yj , zj , wj);αx̃N
j
, βx̃N

j
, δx̃N

j
〉, 〈(aij , bij , cij , dij);αq̃N , βq̃N , δq̃N 〉, 〈(bi, gi, hi, ki);

αq̃N , βq̃N , δq̃N 〉, respectively. Then the problem (2) becomes

Maximize (or Minimize)Z̃N =

n∑
j=1

〈(pj , qj , rj , sj);αc̃Nj , βc̃Nj , δc̃Nj 〉

⊗ 〈(xj , yj , zj , wj);αq̃Nj , βq̃Nj , δq̃Nj 〉;

subject to (3)
n∑
j=1

〈(aij , bij , cij , dij);αãNij , βãNij , δãNij 〉 ⊗ 〈(xj , yj , zj , wj);αq̃N , βq̃N , δq̃N 〉

≤ 〈(bi, gi, hi, ki);αq̃N , βq̃N , δq̃N 〉, i = 1, 2, ...,m,

where 〈(xj , yj , zj , wj);αx̃N
j
, βx̃N

j
, δx̃N

j
is a non-negative SVTRN number.
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Step 3: Using the arithmetic operations of SVTRN numbers, the problem (3) may be rewritten
as follows:

Maximize (or Minimize)Z̃N =

n∑
j=1

S
(
〈(pj , qj , rj , sj);αc̃Nj , βc̃Nj , δc̃Nj 〉

)
⊗ 〈(xj , yj , zj , wj);αx̃N

j
, βx̃N

j
, δx̃N

j
〉;

subject to (4)
n∑
j=1

(
〈(aij , bij , cij , dij);αãNij , βãNij , δãNij 〉 ⊗ 〈(xj , yj , zj , wj);αq̃N , βq̃N , δq̃N 〉

)
≤ 〈(bi, gi, hi, ki);αq̃N , βq̃N , δq̃N 〉,
i = 1, 2, ...,m; yj − xj ≥ 0, wj − zj ≥ 0,∀j = 1, 2, ..., n.

Step 4: Find the optimal solution xj , yj , zj , and wj by solving the problem (4).

Step 5: Find the neutrosophic solution by putting the values of xj , yj , zj , and wj in x̃Nj =
〈(xj , yj , zj , wj);αx̃N

j
, βx̃N

j
, δx̃N

j
〉.

Step 6: Find the neutrosophic optimum value by putting x̃Nj into
n∑
j=1

c̃Nj ⊗ x̃Nj .

4. Stock portfolio investment problem

In this section, the stock portfolio investment problem introduced by Yin [41] is studied in
the neutrosophic environment. Before introducing the problem-formulation, some of required
assumptions and notation are described.

4.1. Assumptions

In the stock portfolio problem, the following assumptions are used:

� The expected rate of return and risk loss rate are evaluated by investors.

� Securities are indefinite and may be divided.

� No need to pay the transaction costs in the course of transaction.

� Assumptions of non-satisfaction and avoiding tisk are obeyed by investors.

� Short selling operation is not allowed.

� Interest rate of the bank is unchanged for investors during investment period.

4.2. Notation

In the stock problem, the following notion can be used:
Index:

j: Risk securities.
Decision variable:

xj : Proportion of funds invested in the secondary securities.
x0: Proportion of the total amount of investment in the investment period.
x: Expected return rate of an investment combination introduced by investors.
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Parameters:
A: Rate of risked return.
rj : Expected return rate.
B: Portfolio risk amount.
r0: Interst rate of the bank.

Hence, the problem can be formulated as follows:

Max)R̃N = r̃N0 ⊗
n∑
j=1

r̃Nj ⊗ xj ;

subject to (5)

ÃN ⊗ x ≤ B̃N ;

x0 +

n∑
j=1

xj = 1,

xj ≤ 0, j = 1, 2, ..., n.

where, ÃN = (ãNij )m×n, B̃N = (b̃N1 , ..., b̃
N
m)T , r̃N = (r̃N1 , ..., r̃

N
n )T , and X = (x1, ..., xn)T .

Example 1. Consider the following FNLPproblem

max Z̃N = 〈(3, 5, 6, 8); 0.6, 0.5, 0.4〉 ⊗ 〈(5, 8, 10, 14); 0.3, 0.6, 0.6〉 ⊕ x̃N2
subject to

〈(3, 5, 6, 8); 0.6, 0.5, 0.4)〉 ⊗ x̃N1 ⊕ 〈(5, 8, 10, 14); 0.3, 0.6, 0.6〉 ⊗ x̃N2
= 〈(16, 18, 22, 30); 0.8, 0.2, 0.3〉,
〈(5, 8, 110, 14); 0.3, 0.6, 0.6⊗ x̃N1 ⊕ 〈(3, 5, 6, 8); 0.6, 0.5, 0.4)〉 ⊗ x̃N2
= 〈(13, 15, 18, 24); 0.8, 0.2, 0.3〉,

Also, x̃N1 and x̃N2 are non-negative SVTRN numbers.
Let x̃N1 = 〈(x1, y1, z1, w1); 0.8, 0.2, 0.3〉, x̃N2 = 〈(x2, y2, z2, w2); 0.8, 0.2, 0.3〉 be non-negative SVTRN
numbers. By using the step 2, the above problem becomes

max Z̃N = 〈(3, 5, 6, 8); 0.6, 0.5, 0.4〉 ⊗ 〈(x1, y1, z1, w1); 0.8, 0.2, 0.3〉 ⊕ 〈(5, 8, 10, 14); 0.3, 0.6, 0.6〉
⊗ 〈(x2, y2, z2, w2); 0.8, 0.2, 0.3〉

subject to

〈(x1, y1, z1, w1); 0.8, 0.2, 0.3〉 ⊕ 2〈(x2, y2, z2, w2); 0.8, 0.2, 0.3〉 = 〈(16, 18, 22, 30); 0.8, 0.2, 0.3〉,
〈(x1, y1, z1, w1); 0.8, 0.2, 0.3〉 ⊕ 〈(x2, y2, z2, w2); 0.8, 0.2, 0.3〉 = 〈(13, 15, 18, 24); 0.8, 0.2, 0.3〉.

Moreover, 〈(x1, y1, z1, w1); 0.8, 0.2, 0.3〉, and 〈(x2, y2, z2, w2); 0.8, 0.2, 0.3〉 are non-negative SVTRN
numbers. By using step 3, the above problem can be written as:

maxZ =

(
1

16

)
(5.1x1 + 8.5y1 + 10.2z1 + 13.6w1 + 5.5x2 + 8.8y2 + 11z2 + 15.4w2)

subject to

x1 + 2x2 = 16; y1 + 2y2 = 18;

z1 + 2z2 = 22; w1 + 2w2 = 30;

2x1 + x2 = 13; 2y1 + y2 = 18;

2z1 + z2 = 18; 2w1 + w2 = 24;

y1 − x1 ≥ 0, w1 − z1 ≥ 0;

y2 − x2 ≥ 0, w2 − z2 ≥ 0.
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By using the MATLAB, we obtain the optimal solution of the problem as follows:

x∗1 = 3.3, y∗1 = 4, z∗1 = 4.6, w∗
1 = 6;

x∗2 = 6.3, y∗2 = 7, z∗2 = 8.3, w∗
2 = 12.

By using step 5, the neutrosophic solution is given by

x̃N1 = 〈(3.3, 4, 4.6, 6); 0.8, 0.2, 0.3〉,

and

x̃N2 = 〈(6.3, 7, 8.3, 12); 0.8, 0.2, 0.3〉,

and hence the neutrosophic optimum value is

Z̃N = 〈(41.4, 78, 119, 220.8); 0.3, 0.6, 0.6〉.

Example 2. Consider the data of the expected return rate the risk loss rate and the risk
coefficient of two stocks listed as follows:
Expected return rate %

r̃N1 = 〈(1, 2, 3, 4; 0.1, 0.9, 1〉, r̃N2 = 〈(0, 2, 3, 5; 0.1, 0.9, 0.9〉.

Risk loss rate %

ãN11 = 〈(1, 2, 4, 6; 0.1, 0.9, 0.9〉, ãN12 = 〈(1, 3, 4, 5; 0.1, 0.8, 0.1〉.
ãN21 = 〈(2, 3, 4, 6; 0.1, 0.8, 1〉, ãN22 = 〈(3, 4, 6, 7; 0.1, 0.8, 0.9〉.

risk coefficient %

b̃N1 = 〈(0, 2, 3, 4; 0.03, 0.95, 0.98〉, b̃N2 = 〈(1, 2, 3, 5; 0.03, 0.98, 0.95〉,

for the return rate r̃N0 = 〈(0, 1, 2, 3, 4; 0.1, 0.9, 1〉.
According to problem (5) and by using the score function in definition (11), we have

MaxR = 0.075x0 + 0.125x1 + 0.1875x2;

subject to (6)

0.24375x1 + 0.235x2 ≤ 0.056,

0.26250x1 + 0.500x2 ≤ 0.0625,

x0 + x1 + x2 = 1,

xj ≤ 0, j = 0, 1, 2.

The optimal solution is (x∗0, x
∗
1, x

∗
2) = (0.8750, 0, 0.125), and the corresponding optimum value

is R = 0.0891. Hence the neutrosophic optimum value is R̃N = 〈0, 1.125, 3, 3.25; 0.1, 0.9, 0.9〉.

5. Conclusions

In this paper, we proposed a new method to find the neutrosophic optimal solution of
the linear programming problem in neutrosophic environment with equality constraints. The
advantage of this approach is that neutrosophic linear programming allows the DM to deal
with the situation under uncertainty realistically. In addition, it is solved easily by using on
neutrosophic theory. The study under uncertainty makes the investment portfolio more realistic
and practice to describe the expected return rate, and also risk loss rate. The advantages of
the method for the investors are: the ability for choosing the risk coefficient so as to achieve
higher expected returns, and also determining his/ her strategies for selecting the portfolios.
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