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1. Introduction

Several decision problems are modeled by mathematical programming problems, whether in
physics, industry, biology, economics or other fields; optimization methods are then used to solve
these problems. At the beginning, problems were modeled with a single objective function, in
which only one decision-maker was involved. Then, problems were discovered in which a single
decision-maker seeks to optimize several objectives that are generally in conflict, these are
multi-objective programming problems, see [4, 7]. It was therefore necessary to specify a sense
of resolution and then develop methods of resolution. Other decision-making problems exist
when several decision-makers are involved in the decision-making process; each decision-maker
seeks to solve a problem with several objectives. These types of problems are modeled by
multi-level multi-objective programming problems, see [6, 8, 1].

Multi-level optimization appears to be a very suitable tool to model decision-making prob-
lems where multiple decision-makers interact in a hierarchical structure. Mathematically, in
a multi-level programming problem, the higher level variables are considered as parameters
in the lower level programming problems and the problems of the higher level are regarded
as constraints of the lower level. Multi-level programming problems have several applications
in different branches such as supply chain management, network defense, planning, logistics,
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economics, government, autonomous institutions, agriculture, army, management, schools, hos-
pitals, banks, etc . . . Although most research on multi-level programming has focused on cases
with only two levels (called two-level programming), see [6]. There are many programming
problems that involve more than two levels. Since the pioneering work of Bracken and McGill
[2, 3], several researchers have published monographs and literature reviews in which theoretical
and methodological aspects of two-level optimization were discussed. Several approaches have
been developed to solve the multi-level programming problems. For a good bibliography of
these problems and their applications, see [5].

In this paper, we consider a ML-MOLPP where the objective functions and the constraints
are linear. We exploit the algorithms developed by P.L. Yu and M. Zeleny in [10] page 450 and
461, to develop a new algorithm to generate the entire set of all the possible compromises.

So, in this paper, we propose an adaptation of the methods given in [10] to generate the
entire set of possible compromise solutions. In other words, we aim to provide decision-makers
involved in decision-making with a set containing all feasible solutions that are non-dominated
solutions for all their multi-objective problems. First, we define the set of all non-dominated
feasible solutions (set of all possible compromise solution) for a ML-MOLPP and prove that
it can be decomposed into non-dominated facets of the feasible region. So, we develop an
algorithms to generate the entire non-dominated feasible solutions set. The algorithm use the
P.L. Yu and M. Zeleny’s method for generating non-dominated facets of multi-objective linear
programming problem (MOLPP), see [10]. Next, we define a sorting set as the facets (convex
subsets) constituting the non-dominated feasible solutions set.

The paper is organized as follows. In the next section, we develop the mathematical formula-
tion of the problem. In Section 3, we present some tools of multi-objective linear programming,
that is non-dominated solutions and some necessary results about non-dominated facets of a
given feasible region. In Section 4, we present the algorithm to generate the entire set of all
possible compromise solutions of a ML-MOLPP. In Section 5, we demonstrate the approach
with a numerical example. Finally, a conclusion is given in Section 6.

2. Problem formulation

Consider a P -level linear programming problem (P ≥ 2) and denote DMp the decision maker
at pth level that has control over the decision variables xp = xp1, . . . , xpnp

∈ Rnp , p = 1, . . . , P ,

where x = (x1, . . . , xP )t, n = n1 + . . .+ nP and k = k1 + . . .+ kP .
We define

Fp : Rn1 × Rn2 × . . .× RnP 7−→ Rkp

x 7−→ Fp(x) = cpx,
(1)

where

cp =


cp1

cp2
...

cpkp

 =


c11p1 . . . c1n1

p1 c21p1 . . . c2n2
p1 . . . cP1

p1 . . . cPnP
p1

c11p2 . . . c1n1
p2 c21p2 . . . c2n2

p2 . . . cP1
p2 . . . cPnP

p2
...

...
...

...
...

...

c11pkp
. . . c1n1

pkp
c21pkp

. . . c2n2

pkp
. . . cP1

pkp
. . . cPnP

pkp

 , p = 1, . . . , P,

cpqx = c1jpqx
1 + c2jpqx

2 + . . .+ cPj
pq x

P , (p = 1, . . . , P, q = 1, . . . , kp, j = 1, . . . , np)

= c11pqx11 + . . .+ c1n1
pq x1n1 + c21pqx21 + . . .+ c2n2

pq x2n2 + . . .+ cP1
pq xP1 + . . .+ cPnP

pq xPnP
,

and
cpjpq = cp1pq, c

p2
pq, . . . , c

pnp
pq , p = 1, . . . , P, q = 1, . . . , kp.
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The formulation of a P -level multi-objective linear programming problem is given as follows:

Level 1

max
x1

F1(x) = max
x1


c11x

c12x
...

c1k1
x

 ,

such that x2, . . . , xP solve
Level 2

max
x2

F2(x) = max
x2


c21x

c22x
...

c2k2x

 ,

...
such that xP solves

Level P

max
xP

FP (x) = max
xP


cP1x

cP2x
...

cPkP
x



(2)

subject to
x ∈ S = {x ∈ Rn | Ax ≤ b, x ≥ 0, b ∈ Rm} ,

where S ̸= ∅ is the multi-level convex constraints feasible choice set, m is the number of the
constraints, kp is the number of DMp’s objective functions, k is the number of all the objective
functions that constitutes the ML-MOLPP, cijpq are constants, A is a (m× n)-matrix and b is a
m−vector. We assume that m < n and the feasible region S is a compact polyhedron, which
means bounded polyhedron.

Notation 1.

• For any x ∈ S, we use xi to indicate its ith coordinate, also called its ith component and
we define the following sets of indices:

I = {1, 2, . . . ,m} , J = {1, 2, . . . , n} ,M = {1, 2, . . . , n+m} .

Let JB and JN be two subsets of J verifying

J = JB ∪ JN , JB ∩ JN = ∅, |JB | = m, |JN | = n−m,

this will allow us to write the partition of x as follows:

x = x(J) = (xj , j ∈ J), x =

(
xN

xB

)
,

xN = x(JN ) = (xj , j ∈ JN ), xB = x(JB) = (xj , j ∈ JB).

(3)

The decision variables vectors x ∈ S will be considered as column vectors, unless otherwise
explicitly stated and xt refers to the transposition of x which is a row vector. The x > 0



16 Mustapha Kaci and Sonia Radjef

and x ≥ 0 ratings indicate that all x components are positive and not negative, respectively.
For two vectors x1 and x2, the x1 > x2 notation means x1−x2 > 0. The x1 ≥ x2, x1 < x2,
x1 ≤ x2 . . .etc, notations should be interpreted accordingly.

• Let A = (aij) be a matrix of size m1 ×m2, where m1,m2 are any integers. We denote by
At the transposed matrix of A, defined by At = (aji).

• For practical calculations, we introduce the following notation of a matrix A:

A = (a1, a2, · · · , aj , · · · , an) =



A1

A2

...
Ai

...
Am


,

where

aj = A(I, j) =


a1j
a2j
...

amj

 , j ∈ J

is a column vector of dimension m and is considered as an matrix of order (m× 1) and

Ai =
(
ai1 ai2 . . . ain

)
, i ∈ I

is a row vector of dimension n and can be considered as an matrix of order (1× n). So,
we can write the partition of a matrix A as follows:

A = (AN , AB), AN = A(I, JN ), AB = A(I, JB). (4)

3. Preliminaries

We already know that the feasible region S defined from a linear inequality system is a convex
polyhedron, see [10], moreover we have assumed that S is bounded. Then, it is clear that
the notion of polyhedron, which is a geometric notion, is naturally attached to the linear
optimization models, in particular the multi-objective multi-level linear programming problems
that we consider in this work. For more details about the results given here, see [10].

Let’s denote by Ã a ((n +m) × n)−matrix which the first m rows correspond to the rows
of the matrix A and the last rows correspond to the n non-negativity constraints (xij ≥ 0, i =

1, . . . , P, j = 1, . . . , ni), b̃ be a (n + m)−vector with b̃i = bi for i = 1, . . . ,m and b̃i = 0 for
i = m+ 1, . . . ,m+ n, which means:

Ã =

(
A

−Idn

)
, b̃ =


b
0
0
...
0

 ,

where Idn is the identity matrix of order n. Consider the linear constraints of the problem (2)
(linear system of inequalities), defined by

Ãx ≤ b̃. (5)

Then, for all i ∈ M , we have
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1. The solution set F i of the system Ãix = b̃i is the affine hyperplane defined by

F i =
{
x ∈ Rn | Ãix = b̃i

}
.

2. The solution set Si of the system Ãix ≤ bi is the affine half-space defined by

Si =
{
x ∈ Rn | Ãix ≤ b̃i

}
.

3. The feasible region S of the solutions of the inequality system (5) is obtained by the
intersection of a finite number of half-spaces Si of Rn

S =

m+n⋂
i=1

Si.

Definition 1.

1. For all i = 1, . . . ,m, F i is called boundary hyperplane. Note that a boundary hyperplane
does not necessarily meet the polyhedron S, see the Figure 1.

2. The intersection of a boundary hyperplane with the polyhedron S forms a face of S.

3. The intersection of a boundary hyperplane with the polyhedron S containing exactly one
point is an extreme point of S.

4. A face is also a polyhedron and a polyhedron is a face of itself.

More generally, for a given Q ⊆ M , let ÃQ be the matrix derived from Ã by deleting the

rows which are not in Q. Similarly, b̃Q is derived. Then, we call a facet of S the set defined by

F (Q) =
{
x ∈ S : ÃQx = b̃Q

}
.

Remark 1. For all Q ⊆ M , we have

1. A facet F (Q) of S can be empty.

2. The dimension of a facet F (Q) is the dimension of the affine manifold generated by F (Q).

3. If Q contains only one element, then a facet F (Q) of S is a face. If moreover F (Q) ̸= ∅,
then the dimension of F (Q) is equal to n− 1.

4. If Q contains more than one element, then the dimension of F (Q) is less or equal to n−1.

Notation 2. Let X be an arbitrary subset of S, then its closure, relative interior (with respect
to the relative topology induced in the manifold generated by S) will be denoted by X̄, X

′

respectively.

Definition 2. Let F (Q) be a facet of a polyhedron S, then

1. The closure F (Q) and the relative interior F (Q)
′
are convex sets.

2. F (Q) is called a proper facet if it is different from the polyhedron S.
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Figure 1: Boundary hyperplanes in R2

3.1. Dominated and non-dominated feasible solutions

Let p = 1, . . . , P and consider the following multi-objective linear programming problem:max cpx
Ax ≤ b
x ≥ 0

(6)

where A is a (m× n)-matrix and b is a m−vector.
Let Zp be the DMp’s criteria space defined as follows:

Zp =
{
z ∈ Rkp : z = cpx, x ∈ S

}
.

Definition 3.

• For z1, z2 ∈ Zp, we say that z1 dominates z2 if z1 ≥ z2.

• For the feasible solutions x1, x2 ∈ S, we say that x1 dominates x2 if cpx
1 ≥ cpx

2.

• A feasible solution x ∈ S is non-dominated if it is not dominated by any other feasible
point of S.

Notation 3.

• Np denotes the set of all non-dominated feasible solutions and Dp denotes the set of all
dominated feasible solutions of the problem (6).

• Since the feasible region S is a compact polyhedron, then it has a finite number of vertices
(also called extreme points). We denote the set of all extreme points of S by Sdex.

• We denote the set of all non-dominated extreme points (non-dominated feasible solution
that belongs to Sdex) of the problem (6) by:

Ndex
p = Sdex ∩Np

and Ndx
p will denote an arbitrary element of Ndex

p .



The set of all the possible compromises of a ML-MOLPP 19

Lemma 1. Let x1, x2 ∈ S and x1 ∈ Dp. Then,
[
x1, x2

)
⊂ Dp, where[

x1, x2
)
=

{
αx1 + (1− α)x2 | 0 < α ≤ 1

}
is the line segment bounded by x1 and x2. Specifically, if x1 ∈ S

′
then S

′ ⊆ Dp.

Theorem 1. Let X be an any subset of S, suppose that x1 ∈ X
′
and x1 ∈ Np. Then, X̄ ⊂ Np.

Generally, the objectives of a MOLPP are in conflict, which means that for all p = 1, . . . , P
we have S ̸= Np. Then, from theorem 1 and lemma 1, we get that S

′ ⊆ Dp. This means that
the non-dominated feasible points belong to the facets of the feasible region S. This is why the
search for non-dominated points of a MOLPP is done on the boundary of the feasible region
(S private of S

′
).

Definition 4. Given Q ⊆ M , then the set

Np(Q) = Np ∩ F (Q)

is called non-dominated facet.

Theorem 2. (Decomposition of Np into non-dominated facets) Let Q ⊂ M , l = 0, . . . ,m + n
and

F l = {Q ⊂ M : |Q| = l} .
Then,

Np =

m+n⋃
l=0

⋂
Q∈Fl

Np(Q). (7)

Definition 5. A facet F (Q) is called a full facet, if there is no Q
′
containing Q such that

F (Q) = F (Q
′
). In other words, if F (Q

′
) also represents the facet F (Q), then Q

′ ⊂ Q.

Theorem 3. Let F (Q) be a full facet such that Ndex
p (Q) := Ndex

p ∩F (Q) ̸= ∅, then F (Q) ⊂ Np,

only if Ndex
p (Q) has at least n− |Q|+ 1 elements.

After adding the slacks variables to the linear constraints (Ax ≥ b), we get Bx = b, where
B = (A, Idm) and Idm is the identity matrix of size m ×m. To simplify the presentation, we
will not change the notation of the decision variable vector x and the matrix cp. The use of the
matrix B means that x is a (n+m)−vector and cp =

(
cp, 0kp×m

)
, where 0kp×m is a matrix of

size (kp ×m) with components equal to zero.

Definition 6. Let JB ⊂ M such that |JB | = m, JN = M − JB, BJB
be the non-singular

sub-matrix of B (called basis) of size m×m and BJN
be the remaining sub-matrix. We define

xJB
=

((
B−1

JB
b
)
j
: j ∈ JB

)
and xJN

= (xj = 0 : j ∈ JN ) .

Then, the point x0 = (xJB
, xJN

) (renumber the indexes if necessary) is called basic feasible
solution. Then, we use JB to represent BJB

.

Theorem 4. Let x0 = (xJB
, xJN

) be a basic feasible solution with basis JB and consider the
linear problem

wp = max

kp∑
i=1

vpi (8)

subject to
S̃p =

{
(x, vp) : x ∈ S, cpx− vp ≥ cpx

0, vp ≥ 0
}
,

where
vp =

(
vp1, . . . , vpkp

)
.

Then,
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• x0 is a non-dominated point, if and only if, wp = 0.

• x0 is a dominated point, if and only if, wp > 0.

4. Results

Multi-level multi-objective linear programming problems are characterized by the presence of a
hierarchy. That is to say, the solution chosen by the decision maker of the lower level depends
on the one chosen by the higher level, then the procedures built to obtain a compromise solution
of the ML-MOLPP must take this fact into account. So, the hierarchy takes its meaning when
we try to determine one and only one compromise, in other words, it is a way of favoring a
compromise among other existing ones. On the other hand, sometimes the compromise achieved
is not satisfactory and the procedure has to be restarted to find another one, which is sometimes
annoying, hence the interest of developing an algorithm to generate all the possible compromise
solution. So, to get all possible compromise solutions, we don’t need to consider any hierarchy.

In 1975, P.L. Yu and M. Zeleny presented two methods for locating the set of all non-
dominated solutions of a MOLPP, the first allows to generate the set of all non-dominated
extreme points Ndex

p see [9] and the second generates the entire set of all non-dominated solu-
tions Np through the set of all non-dominated extreme points, see [10].

In a ML-MOLPP each DMp looks for a non-dominated feasible solution (non-dominated
point) in the set of non-dominated solution Np, so as to maximize its objective function Fp only
over the decision variable xp that are over his controls. So, any potential compromise solution
c
x of a ML-MOLPP is necessarily included in the intersection of the P -sets of non-dominated

solutions of the P -MOLPPs which constitutes the P -levels. Indeed, if
c
x does not belong to the

intersection of Np for p = 1, . . . , P , then the compromise
c
x becomes a dominated solution for

at least one decision maker which would contradict the fact that
c
x is a compromise solution of

ML-MOLPP. So, we can naturally define the set of all the compromise solutions (non-dominated
feasible solutions) of a ML-MOLPP as follows:

N̂ =

P⋂
p=1

Np. (9)

Similarly, we define the set of all non-dominated extreme points of a ML-MOLPP as the set of
common non-dominated extreme points between all the sets Ndex

p , that is:

N̂dex =

P⋂
p=1

Ndex
p . (10)

The definition of the set N̂dex is consistent and does not miss any other non-dominated extreme
point. Indeed, since for all p = 1, . . . , P , the set of non-dominated points Np is a polyhedron
not necessarily convex obtained as an union of non-dominated facets of S, see [10]. Then, for
any two levels p1, p2, the intersection Np1

∩ Np2
can never contain any new non-dominated

extreme point that does not belong to both Np1
and Np2

. Which means, all the extreme points
of the polyhedron Np1

∩Np2
are extreme points of both Np1

and Np2
. This is true because Np1

and Np2 are polyhedrons contained in the boundary of another polyhedron S, this is not true
in general, see Figures 2.

Remark 2. Since for p = 1, . . . , P , Np is not necessarily a convex set, N̂ is not convex in

general. If N̂ = ∅, we say that the problem (2) is unsolvable.
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Figure 2: Illustrate the set N̂dex for P = 2 and S ⊂ R3.

4.1. Non-dominated facets of ML-MOLPP

Let assume that N̂ ̸= ∅ and define the set of all subsets Q of M that corresponds to non-empty
facets F (Q) of the feasible region S, that are contained in N̂ , as follows:

N̂ =
{
Q ⊂ M | F (Q) ̸= ∅ and F (Q) ⊆ N̂

}
.

Notation 4. The facet corresponding to a subset Q of N̂ is called non-dominated facet for
ML-MOLPP and denoted by

N̂(Q) =

P⋂
p=1

Np(Q).

It is clear that for two subsets Q1 et Q2 in N̂ verifying Q1 ⊂ Q2, we have F (Q2) ⊆ F (Q1).
In order to eliminate all the facets F (Q2) that are contained in bigger one F (Q1), we define a
new set Ñ that contains the elements of N̂ which does not contain any other subset of N̂ , as
follows:

Ñ =
{
Q ∈ N̂ | for all Q

′
∈ N̂ , Q ̸= Q

′
: Q

′
̸⊂ Q

}
.

Then, we have the decomposition of N̂ in the following theorem.

Theorem 5. The following decomposition of N̂ holds:

N̂ =
⋃

Q∈Ñ

N̂(Q). (11)

Proof. Since for all p = 1, . . . , P , we have:

Np =

n+m⋃
l=0

⋂
Q∈FQ

Np(Q)

then, we get

N̂ =
⋂P

p=1 Np

=
⋂P

p=1

(⋃n+m
l=0

⋂
Q∈Fl Np(Q)

)
=

⋃n+m
l=0

⋂
Q∈Fl

(⋂P
p=1 Np(Q)

)
=

⋃n+m
l=0

⋂
Q∈Fl N̂(Q).
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Definition 7. A facet F (Q), such that Q ∈ Ñ , is called sorting set for ML-MOLPP, we denote
it by SP.

4.2. Algorithm to generate the entire set N̂

We can generate the entire set N̂ as follows: we begin by generate all the set Np of non-
dominated solutions of all the multi-objective problems of all the levels, after that we take their
intersection. To do it suffices to apply the method of P.L. Yu and M. Zeleny described in [10],
since each Np in an union of facets, so, their intersection is not hard to get.

But the method proposed by P.L. Yu and M. Zeleny is composed of two major phases. The
first in which the set of all extreme non-dominated points are determined and the second phase
in which we recover the set of all the non-dominated points. In addition, the procedure must
be repeated P times to obtain all the sets Np, which makes the task very expensive in time and

memory. For this reason, we propose another way to get the solution set N̂ .

4.2.1. Algorithm construction

1. First of all, we start by getting all the set N̂dex of non-dominated extreme points of all
the MOLPPs of all levels. Using the procedure described by P.L. Yu and M. Zeleny, we
generate all the sets Ndex

p , see [10, 9]. It means, for any p = 1, . . . , P , we use the P.L.

Yu and M. Zeleny’s algorithm to generate the set Ndex
p of all non-dominated extreme

points of the problem 6, then we deduce the set N̂dex of non-dominated extreme points
of ML-MOLPP.

2. We start looking for all the facets that are non-dominated for all levels at the same time.
Note that if we assume that N̂ ̸= ∅, then, we always find a non-dominated facet for a
given ML-MOLPP. In the worst case, we get facets of dimension 0 (elements of N̂dex), or
even segments (facet of dimension 1).

3. An important note is that we are looking for facets that have all their extreme points in
the set N̂dex and those facets are of dimension less or equal to n− 1. These are the only
facets that will pass the non-dominance test that we will set out in the next steps. So, to
get those facets we do:

(a) Let d̂ denote the cardinal of N̂dex and N̂dxi for i = 1, . . . , d̂ denotes an element of
N̂dex.

(b) For all g = 1, . . . , d̂, we define the set of all subsets of the set
{
1, . . . , d̂

}
that contains

exactly g elements, as follows:

Ug =
{
U ⊆

{
1, . . . , d̂

}
: |U | = g

}
. (12)

(c) For all g = 1, . . . , d̂ and U ∈ Ug, we can associate the convex hull of the points N̂dxi

for i ∈ U , as follows:

H(U) =
({

N̂dxi | i ∈ U
})

. (13)

Note that the set H(U) is not always a facet of S.

(d) Among all the sets of the form (13), we determinate those that are facets of S. In
other words, determine a set of indexes Q ⊂ M such as the facet F (Q) verifies:

F (Q) = H(U).
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To this, simply substitute all the points N̂dxj for j ∈ U , in the system Ãx = b̃, then
take Q the set of indixes i ∈ M for which:

ÃiN̂
dxj = b̃i for all, j ∈ U.

If the obtained Q is an empty set, then H(U) is not a facet of S.

(e) For all g = 1, . . . , d̂ and U ∈ Ug, define the set Gg which contains only the faces of the
feasible region S that can be defined as the convex hall of g extreme non-dominated
points of N̂dex, as follows:

Gg = {F (Q) | F (Q) = H (U)} . (14)

(f) Since we are looking for a sorting set F (Q) as a convex hall of some extremes non-
dominated point (F (Q) ∈ Gg), where Q ∈ F l, then from theorem 3, we assume that
g ≥ n− l + 1. Then, the set

Ĝg =
⋃

l≥n−g+1

{
F (Q) | Q ∈ F l, F (Q) = H (U)

}
(15)

contains only the facets of the feasible region S that can be defined as the convex
hall of at least g-extreme non-dominated points of N̂dex and that need to be checked
for non-dominance.

4. Define the set of all facets of S that needs to be checked for non-dominance by

Ĝ =

d̂⋃
g=1

Ĝg. (16)

Note that
Ĝ1 = N̂dex.

5. Use the following results to test the elements of Ĝ.

Proposition 1 (Non-dominance criterion for a point). Let Pdx ∈ S and wp be the optimal
value of the problem (8) subject to

S̃p =
{
(x, vp) / x ∈ S, cpx− vp ≥ cpP

dx, vp ≥ 0
}

and define
R = w1 + . . .+ wP .

Then, Pdx is a non-dominated point for ML-MOLPP, if and only if R = 0.

Theorem 6 (Non-dominance criterion for a facet). Let g ≥ 2 and F (Q) ∈ Ĝg, suppose
that Pdx ∈ F (Q). Then: Pdx ∈ N̂ − N̂dex if and only if F (Q) ⊆ N̂ .

Proof.

• (⇒) Since

Pdx ∈ F (Q) ∩
(
N̂ − N̂dex

)
,

then, Pdx ∈ F (Q)
′
. From theorem 1, we have

F (Q) = F (Q) ⊆ N̂ .
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• (⇐) is immediate.

Remark 3. Theorem 6 says that: if a given facet F (Q) contains a non-dominated point
Pdx in its relative interior F (Q)

′
, then, F (Q) is a non-dominated facet for a ML-MOLPP.

To apply the theorem, it suffices to choose g−numbers α1, . . . , αg verifying

0 < αt < 1 and

g∑
t=1

αt = 1

and check the point

Pdx =

g∑
t=1

αtN
dxt

for non-dominance using proposition 1. In other words, a facet is non-dominated for a
ML-MOLPP, if and only if, there is at least one non-dominated point that belongs to its
relative interior.

6. During the execution of the procedure, if a non-dominated facet F (Q) is found, then
all the facets contained in F (Q) must be discard from the test, because they are all
non-dominated facets, for this we do:

(a) For a non-dominated facet F (Q) ∈ Ĝg, denote by VF (Q) the set of all the facets that
are strictly contained in F (Q).

(b) Denote by ŜP, the set of all the sorting sets of the ML-MOLPP and for all F (Q) ∈
ŜP denote by W the set of facets that will not be checked for the non-dominance
test defined by

W =
⋃

F (Q)∈ŜP

VF (Q).

4.3. Full algorithm

In this section, we shall use the previous algorithm construction to describe a method for
generating the set N̂ of all possible compromises of ML-MOLPP. Briefly, our method is first
to generate the set N̂dex of common non-dominated extreme points between all the MOLPPs
that constitute the ML-MOLPP. Then, test the non-dominance of all the facets of S that have
all their extreme points on N̂dex.

Explanation of Flow Diagram

Box 1 Generate the set N̂dex of extreme non-dominated points of a ML-MOLPP, by applying
the method of P.L. Yu and M. Zeleny, see [10], to all the MOLPP that constitute the
P−level problem. We get P -sets and then take their intersection.

Box 6 Illustrate the set Ĝd, by locating all the facets of the feasible region S, that contains
exactly d extreme non-dominated points that belong to N̂dex, see the previous section.

Box (7)-(12) Test all the elements of Ĝd, using the criterion given by the theorem 6. In step
10, we put the non-dominated ones in ŜP and put their non-dominated sub-facets in W
to avoid testing them again.
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4.3.1. Flow Diagram
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4.3.2. Algorithm

In this section, we present the full scheme of our method which we constructed previously and
explained with the previous diagram.

Step 1 Get the set N̂dex as described in the previous section. If d̂ = 1, then stop with

N̂ = N̂dex.

Otherwise, go to Step 2.

Step 2 Put ŜP = ∅ and W = ∅.

Step 3 While d̂ > 1 do:

1. Set d̂ = d̂− 1.

2. Illustrate the set Ĝd̂.

3. Put Ĝd̂ = Ĝd̂ −W.

4. While Ĝd̂ ̸= ∅ do:

(a) Select K ∈ Ĝd̂.

(b) Select Pdx ∈ K
′
.

(c) Set p = 1.

(d) Solve the problem (8) subject to

S̃p =
{
(x, vp) / x ∈ S, cpx− vp ≥ cpP

dx, vp ≥ 0
}

(e) If p > P , put R = w1, . . . , wP and go to step (f). Otherwise, put p = p+ 1 and
go to step (d).

(f) If R = 0, elicit VK and put

ŜP = ŜP ∪K,

W = W ∪ VK .
.

(g) Put Ĝd̂ = Ĝd̂ −K.

(h) End while.

5. End while.

Step 4 Get the entire set N̂ as follows:

N̂ =

{⋃{
K : K ∈ ŜP

}
∪ N̂dex, if W ̸= ∅

N̂dex, if W = ∅
.

5. Numerical example

Consider the following Two-levels-multi-objective linear programming problem:

Level 1
max
x1

(
f11(x) = 2x1 + 2x2, f12(x) = − 1

2x1 +
7
25x2, f13(x) = − 1

5x1 +
1
2x2

)
,

such that x2 solves
Level 2

max
x2

(f21(x) = x1 + 3x2, f22(x) = −2x1 − 1x2, f23(x) = x2)

(17)
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subject to
x ∈ S =

{
x ∈ R9 | Bx = b, x ≥ 0, b ∈ R7

}
,

where

B =



−2 1 1 0 0 0 0 0 0
−1 2 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0

−1 −2 0 0 0 0 1 0 0
3 −4 0 0 0 0 0 1 0
1 −2 0 0 0 0 0 0 1


, b =



3
9
6
6

−9
7
2


.

Consider the following two MOLPPs:

(1)

max c1x
Bx = b
x ≥ 0

(2)

max c2x
Bx = b
x ≥ 0

, (18)

where

c1 =

 2 2 0 0 0 0 0 0 0

− 1
2

7
25 0 0 0 0 0 0 0

− 1
5

1
2 0 0 0 0 0 0 0

 , c2 =

 1 3 0 0 0 0 0 0 0

−2 −1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

 .

Step 1 We apply the algorithm described in [10, 9], we get the following two non-dominated
extreme points sets of the linear MOLPP (1) and (2):

• Non-dominated extreme points of problem (1):

Ndx1 = (6, 6), Ndx2 = (3, 6), Ndx3 = (1, 5).

• Non-dominated extreme points of problem (2):

Ndx1 = (6, 6), Ndx2 = (3, 6), Ndx3 = (1, 5),

Ndx4 = (0, 3), Ndx5 = (0, 0).

Then, we get
N̂dex =

{
Ndx1 , Ndx2 , Ndx3

}
.

Step 2 Put
ŜP = ∅ and W = ∅.

Step 3 1. Choose

Pdx =
Ndx1 +Ndx2 +Ndx3

3
.

By solving the linear problem (8) for all p = 1, 2, we get

R = w1 + w2 ̸= 0.

Then, the set
H

({
Ndx1 , Ndx2 , Ndx3

})
is not non-dominated facet of the Two-Level-MOLPP .

2. (a) d̂ = d̂− 1 = 2
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(b) The set Ĝ2 is given by:

Ĝ2 =
{
H

({
Ndx1 , Ndx2

})
,H

({
Ndx2 , Ndx3

})}
,

see figure 3.

(c) Put
Ĝ2 = Ĝ2 −W = Ĝ2.

(d) i. Test the facet K = H
({

Ndx1 , Ndx2
})

, choose

Pdx =
Ndx1 +Ndx2

2
∈ K

′
.

By solving the linear problem (8) for all p = 1, 2, we get

R = w1 + w2 = 0.

Then, put
ŜP =

{
H

(
Ndx1 , Ndx2

)}
and put

Ĝ2 = Ĝ2 −K and W = ∅.

ii. Test the facet K = H
({

Ndx2 , Ndx3
})

, choose

Pdx =
Ndx2 +Ndx3

2
∈ K

′
.

By solving the linear problem (8) for all p = 1, 2, we get

R = w1 + w2 = 0.

Then, put

ŜP = ŜP ∪
{
H

(
Ndx2 , Ndx3

)}
=

{
H

(
Ndx1 , Ndx2

)}
∪

{
H

(
Ndx2 , Ndx3

)}
and put

Ĝ2 = Ĝ2 −K and W = ∅.

Step 4 Get the entire set N̂ of all possible compromises of the Two-Level-MOLPP (17), equal
to:

N̂ = H
(
Ndx1 , Ndx2

)
∪H

(
Ndx2 , Ndx3

)
,

see figure 3.

Remark 4. Consider the non-dominated solution sets of the MOLPP (1)

N1 = H
(
Ndx1 , Ndx2

)
∪H

(
Ndx2 , Ndx3

)
,

and the non-dominated solution set of the MOLPP (2)

N2 = H
(
Ndx1 , Ndx2

)
∪H

(
Ndx2 , Ndx3

)
∪H

(
Ndx3 , Ndx4

)
∪H

(
Ndx4 , Ndx5

)
,

see Figure 4. Then, the set of all the possible compromises N̂ of the Two-levels-MOLPP (17)
contains only the non-dominated facets of both problem (1) and (2), see Figure 3.
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Figure 3: The set of all possible compromises of the Two-levels-MOLPP (17)

(a) Solutions set of problem (1) (b) Solutions set of problem (2)

Figure 4: Non-dominated solutions sets of problems (1) and (2).

6. Conclusion

In this work, we construct a method that generalizes the P.L. Yu and M. Zeleny’s procedure to
solve a ML-MOLPP. First, we defined the set of all the possible compromises of ML-MOLPP
N̂ , it is a set containing all the non-dominated points of all the MOLPP that constitute the
multi-level linear programming problem, also we defined the set of non-dominated extreme
points. We give a criterion of non-dominance of facets. Then, we explain the construction
of our method, we determine the facets that pass the test of non-dominance. After that, we
describe the full algorithm that selects all non-dominated facets for our ML-MOLPP. The union
of the obtained facets made up what we called set of all the possible compromises.

Our goal was to give a method that provides decision-makers involved in the decision-making
process with a set of all the possible compromises that can be considered as the new feasible
region on which the existing approaches can be applied to achieve a single satisfactory solution.
We will try in the near future to examine the robustness of the method and report the results.

Finally, we illustrated our method with an example of two-levels-MOLPP. The extreme
points are calculated manually and the linear mono-objective programs are solved on MATLAB
R2007b after implementing the simplex method.
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