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Abstract. The length of the stochastic shortest path is defined as the arrival probability 
from a source node to a destination node. The uncertainty of the network topology 
causes unstable connections between nodes. A discrete-time Markov chain is devised 
according to the uniform distribution of existing arcs where the arrival probability is 
computed as a finite transition probability from the initial state to the absorbing state. 
Two situations are assumed, departing from the current state to a new state, or waiting 
in the current state while expecting better conditions. Our goal is to contribute to 
determining the critical node in a stochastic network, where its absence results in the 
greatest decrease of the arrival probability. The proposed method is a simply application 
for analyzing the resistance of networks against congestion and provides some crucial 
information of the individual nodes. Finally, this is illustrated using networks of various 
topologies. 
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1. Introduction 
 
The shortest path problem (SP) is one of the fundamental network optimization 
problems and has been studied extensively. Polynomial time algorithms can be 
used for the deterministic shortest path problem [5, 6, 7]. However, the 
stochastic nature of real world problems has led to new stochastic versions of 
the SP problem, especially in telecommunications and transportation networks. 
The stochastic shortest path problem (SSP) is defined in stochastic networks 
where the arc lengths are the stochastic variables or the existence of arcs or 
nodes in the network are defined stochastically (e.g. using uniform distribution 
and the probabilities that arcs are not congested are known). Our goal is to 
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determine which node causes the greatest damage, whenever absent during 
network routing. 

The SSP problem has been developed by researchers based on stochastic 
programming. Liu [12] considered the SSP problem under the assumption that 
the arc lengths are random variables. He established indefinite programming 
models in line with decision criteria and converted the models into deterministic 
programming problems. Gao [9] presents a method for finding the α-shortest 
path and the shortest path in a network using a probability distribution of SP 
length. Pattanamekar et al. [16] consider the travel time uncertainty by 
incorporating two components: the individual travel time variance and the mean 
travel time forecasting error. Nie and Fan [14] formulated the stochastic on-time 
arrival problem as dynamic programming. They consider independent random 
travel times to be directed link lengths. Fan et al. [8] minimized the expected 
travel time such that each link was assumed to be congested or not, with known 
conditional probability density functions for link travel times. 

In this paper, a stochastic process is simply applied to obtain an optimality 
index, rather than the stochastic programing methods. The length of the SSP is 
defined as the arrival probability from a source node to a destination node. A 
discrete-time Markov chain (DTMC) is established according to the uniform 
distribution of the existing arcs and the arrival probability is computed as a 
finite transition probability from the initial state to the absorbing state. The 
states of the established DTMC contain a number of traversed nodes in the 
original network. The proposed method provides comprehensive information on 
the resistance of the network against congestion during transmission from one 
node to another one. Kulkarni [11] developed an exact method based on the 
continuous-time Markov chain in order to compute the distribution function of 
the length of the SP. Azaron and Modarres [3] developed Kulkarni's method to 
queue networks. Thomas and White [19] modeled the problem of constructing a 
minimum expected total cost route from an origin to a destination as a Markov 
decision process. They wanted to respond to dissipated congestion over time 
according to some known probability distribution. Our model gives some crucial 
information on nodes, and it determines the critical network node with the 
greatest decrease in the arrival probability. 

The uncertainty condition associated with the network topology is a clear 
motivation in considering the SSP problem. The conditional probabilities of 
leaving one node for another node are supposed to be known. A DTMC 
stochastic process with an absorbing state is established and the transition 
matrix is obtained. Two conditions at any state of the established DTMC are 
assumed for the absorbing state: departing from the current state to a new state 
whenever a larger labeled node is visited, or waiting in the current state and 
expecting better conditions. Subsequently, the probability of arrival at the 
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destination node from the source node in the network is computed. Finally, we 
develop the proposed method by determining the critical node in the network. 

The remainder of the paper is organized into a number of sections. Section 
2 consists of some preliminary definitions and assumptions for the considered 
model of the stochastic network. The established DTMC, the proposed method 
for the arrival probability and its development to obtain the critical node are 
presented in Section 3. In Section 4, a number of implementations of the 
proposed method on the networks using different topologies are provided. 
 

2. The model of an unstable stochastic network 
 
Consider network G = (N,A) to be a directed acyclic network with node set N 
and arc set A. We can relabel the nodes in a topological order such that for any

Aji ),( , ji   [1]. The physical topology for any Aji ),(  shows a 
connection of nodes Nji , . Actually, the physical topology shows the 
possibility of communication between nodes in the network. To model the 
unstable topology of a network, we took into consideration communication 
networks, where physical connections between nodes exist but traversing any 
further toward the destination node is not possible due to probable congestion. 
Network G has an unstable topology if there are some facilities in the network 
but they cannot be utilized. Hence, the existence of any arc Aji ),(  does not 
imply stable communication between nodes Nji ,  all the time (it may be 
congested). The presumption is that the existence probabilities of the arcs are 
made known by the uniform distribution. 

Now, consider the situation where flow reaches a node but cannot progress 
further because of an unstable topology (some arcs are congested), and there is 
a waiting period for the onset of more favorable conditions. There are two 
options for the wait situation. First, waiting at a particular node with the 
expectation that some facilities will be released from their current condition, 
which is called Option 1. To model such conditions, we consider artificial loops 
(indicated by dash arcs in Figure 1) at any node except the destination node. 
Second, some arcs are traverse that do not lead to visiting a new node, which is 
called Option 2. The stochastic variable of arc ( , )i j N  is shown by ijx . If 

1ijx , it then becomes possible to traverse arc ),( ji  (the connection exists), 
otherwise 0ijx  (the connection does not exist). The existence probability of 
arc ),( ji  is ]1[  ijij xPq . The existence of artificial arc ),( ii  means the 

decision has been made to wait at node i, so then 
{ :( , ) }

1ii ijj i j A
q q


  . 
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Figure 1: The example network with 5 nodes and 7 arcs 

 
Figure 1 shows the example network with its topological ordered nodes. 

This initial topology is the physical topology of the network. Node 1 is the 
source node and node 5 is the destination node. Arc (1, 4) cannot be traversed 
as it does not exist in the physical topology ( 14 0q  ). However, the arcs in the 
physical topology might be experiencing congestion based on known 
probabilities. The numbers on the arcs indicates the values of ijq . 
 

3. The established discrete-time Markov chain  
 
The discrete time stochastic process { , 1,2,3,...}rX r   is called a Markov chain if 
it satisfies the following Markov property (see [17]) 

klkrlrnmrkrlr pSXSXPSXSXSXSXP   ]|[],...,,|[ 1111 . 
 
State 
space S1 S2 S3 S4 S5 S6 S7 S8 

Curren
t nodes {1} {1,2} {1,3} {1,2,3} {1,2,4} {1,3,4} {1,2,3,4} {1,2,3,4,5} 

Table 1: The state space of the example network 

 
Any state Sk of the established DTMC determines the traversed nodes of 

the original network. For the example network (Figure 1), the created states Si, 
are shown in Table 1. The probability of a conditional transition to the next 
state depends on the current state and is independent of previous states. Let 

{ , 1,2,3,...}iS S i  , then the initial state }1{1 S  of DTMC contains the 
single source node and the absorbing state | | {1, 2,3,..., | |}SS N  contains all 
nodes of the network, and departing is not possible; hence, S is a finite state 
space. The transition probabilities klp  satisfy the following conditions 

- 10  klp  for ||,...,2,1 Sk   and ||,...,2,1 Sl   

1

2

3

4

5

0.0579

0.3120

0.6301

0.1698
0.6465

0.1837

0.2470

0.4426

0.3104

0.4566

0.5434
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S

l klp , for ||,...,2,1 Sk  . 

The transition probabilities are elements of matrix |||| SSP  , where klp  is the 
transition probability in the kth row and the lth column, that is, if in some time 
point the chain is in state k, the probability of its one-step transition to state l 
is klp . The state transition diagram of DTMC for the example network is 
shown in Figure 2. 

 
Figure 2: The state space diagram of the established DTMC 

 
For the example network, the absorbing state S8= {1,2,3,4,5} contains all 

nodes of the network; and the instance state S4 of the state space S (Table 1) 
contains nodes }3,2,1{  and all connected components of the network 
constructed by nodes 1, 2 and 3 (see Figure 3). 
 

 
Figure 3: Constructed connected components of state S4 ܵସ 

 
The states of the established DTMC contain the traversed nodes of the 

network which are reached from some of the other nodes in a previous state. 
The final state contains the destination node where DTMC no longer progresses. 
Returning from the last traversed node is not permitted, however waiting in the 
current state is possible. Clearly, a new state is revealed if a leaving arc 

Aji ),(  is traversed such that node i is contained in the current state and 
the new node j is contained in the new state. As previously mentioned, the wait 

S1 

S2 

S3 

S5

S4

S6

S7

S8 

0.3188

0.0579
0.3120 

0.6301 

0.0628 0.6465

0.2907 

0.1699 

0.0771

0.4426
0.3104

0.0873 0.6023

0.3104

0.1379
0.5434

0.6081
0.0983

0. 2937

0.3149

0.6851

1

2

3

1

2

3

1

2

3
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states are indicated as Option 1 or Option 2. The following assumptions 
describe the creation of state space of the established DTMC 

i. Upon arriving at the destination node, the process cannot traverse any 
node nor any arc (i.e. the absorbing state) 
ii. A new state is revealed if a new node in the network is added to the nodes 
of the current state 
iii. According to the nodes of the current state, exactly one new node during 
transition to a new state can be reached. 

 
Kulkarni [11] considers an acyclic directed network and in each transition 

from one state to another state, the possibly exists of adding at least one node. 
Nonetheless, our model is basically deferent from Kulkarni’s model, and we also 
extend wait states whereby traversing some arcs does not lead the creation of a 
new state. 
 
3.1.  Computing the transition and wait probabilities  
 
We obtain the transition matrix P of the established DTMC according to the 
following theorems. 
The transition probabilities (except for the absorbing state) are obtained by 
Theorem 1. 
Theorem 1: If klp  is the kl th element of matrix P such that lk  , || Sl   
and 1 2{1 , ,..., }k mS v v v    is the current state, the transition probability from 
state Sk to state Sl , for all , 1, 2,..., | | 1k l S  , is computed as given below. 
 If kl   then 0klp , otherwise if kl   and we get 

( , ) , ,( , )( , )
[ ] ( (1 ))

m m mk
kl vw vu v v v wv u A u w u Sv wv w

p P E q q q
  

     . 

vwE  denotes the event where arc ( , )v w N  of the network is traversed during 
the transition from kS  to lS  and 

{( , ) : \{ }, \ ,| \ | 1}k m l k l kv w A v S v w S S S S      . 
Proof: Since it is not allowed to traverse from one state to the previous states 
(Assumption (ii)), then it becomes necessary that 0klp , for kl  . Otherwise, 
suppose kl  , during transition from the current state Sk to the new state Sl, it 
is necessary to reach just one node other than the nodes of the current state, so 
| \ | 1l kS S  , kv S  and \l kw S S  are supported by Assumptions (ii) and 
(iii). Two components of the klp  formula should be computed.  

In the last node mv  of the current state Sk, it is possible to wait in mv  by 
traversing an artificial arc ),( mm vv  with a probability 

mmvvq . Notice that it is 
not possible to wait in the other nodes \{ }k mv S v  because as it should be left 
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to create the current state. However, this is not necessary for node mv  which 
possesses the largest label (leaving mv  leads to a new node, and therefore results 
in a new state). If \l kw S S  then one or all of the events vwE  (i.e. to traverse a 
connecting arc between a node of the current state and another node of the new 
state) can occur for ( , )v w  . Then the arrival probability of node lw S  
from the current state Sk is equal to 

( , )
[ ]vwv w

P E
 . The collection probability 

should be computed because of deferent representations of the new state (e.g. 
see Figure 3). Subsequently, the nodes of the current state \{ }k mv S v  (while 
waiting at mv ) should be prevented from reaching other nodes ku S  and 
u w  (Assumption (iii)), so arcs ( , )v u  are not allowed to traverse and they 
are simultaneously excluded, thus it is equal to 

( , ) , ,( , )
(1 )

k
vuv u A u w u Sv w

q
  


. The other possibility at node mv  is leaving mv  for the new node \l kw S S  
with a probability of 

mv wq .□ 

 
Figure 4: The constructed states during transition from S4 to S7  

 
For example, in the established DTMC of the example network (Figure 2), 

the transition probability 47p  is computed using the constructed components as 
shown in Figure 4, specifically 14 24 15 25 33 34( ) (1 )(1 )P E E q q q q     , where 

14 24 14 24 14 24( )P E E q q q q   , however 14 15 25 0q q q    as shown in 
Figure 1, so then 47 33 24 34p q q q   . It is possible to wait at node 3 but at no 
other nodes of the current state S4={1,2,3}, where by traversing arc (2,4) or 
(3,4) the new state S7={1,2,3,4} occurs.  
Theorem 2 describes the transition probabilities to the absorbing state S|S|, 
which are the last column of the transition matrix P. 
Theorem 2: To compute the transition probability from state 

1 2{1 , ,..., }k mS v v v   to the absorbing state S|S|, for 1||,...,2,1  Sk , i.e., 
the k|S|th element of matrix P, and suppose ||Sn Sv   is the given destination 
node of the network, then 

| | ,( , )
[ ]

nk n
k S vvv S v v A

p P E
 

   

4

1

2

3

4

1

2

3
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where 
nvvE  denotes the event that arc ( , )nv v N  of the network is traversed 

during the transition from Sk to S|S|. 
Proof: To compute the transition probabilities ||Skp , for 1||,...,2,1  Sk , it 
should be evident that the final state is the absorbing state | | {1,2,3,...,| |}SS N  
containing all nodes of the network, and the stochastic process does not progress 
any further (Assumption (i)). Subsequently, leaving the arcs ( , )nv v  from 

kv S , the nodes of the current state, toward the destination node | |n Sv S  is 
deemed sufficient. Then, one or all events 

nvvE  (i.e. traversing a connecting arc 
between a node of the current state and the destination node of the absorbing 
state) can happen and the transition probability from the current state Sk to the 
absorbing state S|S| is equals in total to 

,( , )
[ ]

nk n
vvv S v v A

P E
  . The collection 

probability should be computed because of deferent representations of the states 
(e.g., see Figure 3). 

For state S4, transition probability 48p  is obtained by 15 25 35( )P E E E  , 
however 15 25 0q q  , so then 

48 35p q . The wait probabilities, the diagonal 
elements of the transition matrix P, are obtained by Theorem 3. 
Theorem 3: Suppose 1 2{1 , ,..., }k mS v v v   is the current state, then the wait 
probability kkp  is the kkth element of matrix P, which is 

| |

1
1 if | |

1 if | | .

S

kjj k
kk

p k S
p

k S

 
   



  

Proof: The wait probabilities kkp , for 1, 2,...,| | 1k S  , are the complement 
probabilities of the transition probabilities from the current state kS , for 

1, 2,...,| | 1k S  , toward all departure states Sj, for 1, 2,...,| |j k k S   . 

Then, we have | |

1
1

S

kk kjj k
p p

 
  , for 1,2,...,| | 1k S  . In other words, they 

are the diagonal elements of matrix P, which are computed for any row 
1, 2,...,| | 1k S   of the transition matrix (see [10]). The absorbing state S|S| 

does have a departure state, so | || | 1S Sp   as the transition matrix P. 
 

3.2. The arrival probability 
 
The arrival probability from the source node to the destination node in the 
network is analytically defined as a single or multi-step transition probability 
from the initial state S1 to the absorbing state S|S| in the established DTMC. 
According to Assumptions (i), (ii) and (iii), the state space of DTMC is directed 
and acyclic (otherwise returning to the previous states is possible, but 
contradictory). The out-degree of any state is at least one, except for the 
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absorbing state, so for any state Sk there is a single/multi-step transition from 
the initial state S1 to the absorbing state S|S| that traverses state Sk (see [1]). 
Consequently, the absorbing state is accessible from the initial state after finite 
transitions. Let ]|[)( kmlrmkl SXSXPrp    denote the conditional 
probability that the process will be in state Sl after exactly r transitions, given 
that it is in state Sk now. So, if matrix P(r) is the transition matrix after exactly 
r transitions, then it can be shown that rPrP )( , and let )(rpkl  be the klth 
element in matrix rP  (see [10]). Thus, the arrival probability after exactly r 
transitions is ]|[)( 10||||1 SXSXPrp SrS   and it is the 1|S|th element in 
matrix rP . Notice that any path from the source node to the destination node 
in the network needs at most |N| nodes. In other words, |N| nodes on the 
network could be added while DTMC progresses, requiring 1N   transitions in 
DTMC (one node is added for each transition, initially located at the source 
node). Hence, we set 1| | (| | 1)Sp N   as the arrival probability from the source 
node to the destination node. For the example network, we want to obtain the 
probability of arriving at node 5 from node 1. As already mentioned, probability 

)(18 rp  is obtained as shown by the stared line in Figure 5 for 6,5,4,3,2,1r . 
The arrival probability for the example network is equal to 0.6752, and is 
computed for 4r   and does not change for 5,6r   (more than four 
transitions did not improve the arrival probability). 
 

 
Figure 5: The arrival probability and its changes 

 
3.3.  The critical node in the stochastic network 
 
If the removal of a node causes the greatest decrease in the arrival probability, 
then we call it the critical node of the network. Consider that ),( iii ANG   was 
obtained from network G when node i and its adjacent arcs are removed (except 
for the source and destination nodes. The following changes are sufficient: 
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- Set the wait probability of node i to 1, 1iiq   
- Set the existence probabilities of the removed arcs ),( ji  to 0, 0ijq   
- Increase the wait probabilities of the adjacency nodes j as the existence 

probabilities jiq  of the removed arcs ),( ij , jijjjj qqq   
- Set the existence probabilities of the removed arcs ),( ij  to 0, 0jiq  
For example, suppose node 3 is removed from the example network, then the 
changed probabilities are 133 q , 034 q , 035 q , 6880.011 q , 013 q , 

3535.022 q , 023 q . If follows that the arrival probability changes according 
to the removal of nodes (see Figure 5). Hence, failure of node 3 causes the 
greatest decrease in the arrival probability and it is detected as the critical node 
of the example network. Furthermore, Figure 5 shows the destination node is 
not accessible by two transitions if node 3 has failed. When either node 2 or 
node 4 have failed by two transitions, the arrival probability remains zero 
because path 1-3-5 is the only path along which destination node 5 is accessible 
by exactly two transitions: 31 SS   and then 83 SS  . 
 
4. Numerical results 
 
Various implementations of the proposed method on networks with different 
topologies have been presented. For comparison, all networks are created using 
nine nodes and the leaving and the waiting probabilities of nodes are random 
numbers produced by uniform distribution function. Node 1 is the source node 
and node 9 is the destination node in the all networks. They are acyclic directed 
networks and a path from each node to the destination node exists prior to 
removing any node. Subsequently, the arrival probability of the networks is 
computed after eight transitions in the established DTMC. All of the results 
were coded in MATLAB R2008a and performed on a Dell Latitude E5500 
(Intel(R) Core(TM) 2 Duo CPU 2.53 GHz, 1 GB memory). Network 1 has an 
arbitrary topology with the arc leaving probabilities shown in Table 2. For the 
established DTMC on Network 1, the size of the state space is 69. The 
absorbing state containing the destination node is accessible by at least two 
transitions, even though each of the nodes (except for the source and destination 
nodes) has been removed.  
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),( ji  ijq  ),( ji ijq  ),( ji ijq  

(1,2) 0.1283 (2,9) 0.7395 (4,9) 0.0923
(1,4) 0.6075 (3,4) 0.1631 (5,9) 0.7980
(1,6) 0.0362 (3,5) 0.5137 (6,8) 0.9518
(1,8) 0.1555 (3,6) 0.3149 (7,8) 0.9340
(2,3) 0.0600 (4,5) 0.1951 (8,9) 0.5290
(2,4) 0.0460 (4,7) 0.0604
(2,5) 0.1043	 (4,8) 0.6100
Table 2: Arc leaving probabilities of Network 1 

 
The arrival probability of Network 1 is equal to 0.7275. As shown in Figure 

6, node 4 is the critical node of Network 1. 
 

 
Figure 6: The arrival probability of network 1 

 
Network 2 is a grid network and the leaving probabilities of its arcs are 

shown in Table 3. The size of the state space for the established DTMC on 
network 2 is 76.  
 

),( ji  ijq  ),( ji ijq  ),( ji ijq  

(1,2) 0.3957 (3,5) 0.7956 (5,8) 0.5195
(1,4) 0.2432	 (3,6) 0.0524 (5,9) 0.1709
(1,5) 0.2605	 (4,5) 0.5506 (6,8) 0.9118
(2,3) 0.7250	 (4,7) 0.1617 (6,9) 0.0552
(2,4) 0.0154	 (4,8) 0.2663 (7,8) 0.9413
(2,5) 0.1392	 (5,6) 0.0182 (8,9) 0.6796
(2,6) 0.0844	 (5,7) 0.1996
Table 3: Arc leaving probabilities of network 2 

 
Figure 7 shows that node 5 is the critical node of Network 2 in first five 

transitions, and according to the arrival probability, both nodes 5 and 8 are the 
critical nodes of the network at the end of nine transitions. The destination node 
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of Network 2 is accessible upon three transitions where the arrival probability is 
equal to 0.7366. 
 

 
Figure 7: The arrival probability of Network 2 

 
Network 3 is a complete graph with leaving arc probabilities shown in 

Table 4. The size of the state space for the established DTMC on Network 3 is 
129.  
 

),( ji  ijq  ),( ji  ijq  ),( ji ijq  ),( ji ijq  ),( ji ijq  

(1,2) 0.0348	 (2,3) 0.4192	 (3,5) 0.1177 (4,8) 0.5340 (6,9) 0.1135	
(1,3) 0.1000	 (2,4) 0.0560 (3,6) 0.0162 (4,9) 0.1590 (7,8) 0.2530 
(1,4) 0.4603	 (2,5) 0.1308 (3,7) 0.1584 (5,6) 0.0297 (7,9) 0.5592	
(1,5) 0.1197	 (2,6) 0.1082	 (3,8) 0.4912 (5,7) 0.6488 (8,9) 0.6505	
(1,6) 0.1196	 (2,7) 0.0051 (3,9) 0.1158 (5,8) 0.1638  
(1,7) 0.0197	 (2,8) 0.1371	 (4,5) 0.0980 (5,9) 0.0690  
(1,8) 0.0790	 (2,9) 0.1334	 (4,6) 0.1293 (6,7) 0.7289  
(1,9) 0.0159	 (3,4) 0.0462 (4,7) 0.0763 (6,8) 0.0746  

Table 4: Arc leaving probabilities of Network 3 

 
The obtained arrival probability of network 3 in Figure 8 shows the arrival 

probability of network 3 is equal to 0.7893 and node 8 is the critical node of the 
network. 
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Figure 8: The arrival probability of Network 3 

 
5. Conclusion 
 
We have considered an established discrete-time Markov chain stochastic 
process over directed acyclic networks. The arrival probability from a given 
source node to a given destination node was computed by a single/multi-step 
transition probability from the initial state to the absorbing state. Numerical 
results have shown the efficiency of the proposed method in obtaining the 
arrival probability and the transition when the destination node is accessible for 
the first time. The critical node that causes the largest reduction in the arrival 
probability was determined. Hence, this method can be applied to rank nodes of 
a network when computing their criticality probability, separately. Future 
considered research may include extending the described model to continuous-
time varying networks, using the discrete nature of the proposed model when 
applying meta-heuristic methods and reducing the associated number of 
computations. 
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