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Abstract. The accurate short-term forecasting of daily airborne pollen concentrations is of great im-
portance in public health. Various machine learning and statistical techniques have been employed
to predict these concentrations. In this paper, an RNN-based method called PollenNet is introduced,
which is capable of predicting the average daily pollen concentrations for three types of pollen: ragweed
(Ambrosia), birch (Betula), and grass (Poaceae). Moreover, two strategies incorporating measurement
errors during the training phase are introduced, making the method more robust. The data for exper-
iments were obtained from the RealForAll project, where pollen concentrations were gathered using a
Hirst-type 7-day volumetric spore trap. Additionally, five types of meteorological data were utilized as
input variables. The results of our study demonstrate that the proposed method outperforms standard
models typically used for predicting pollen concentrations, specifically the pollen calendar method,
pollen predictions based on patterns, and the naive approach.
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1. Introduction

One of the more important elements in the public health system is the short-term forecasting
of daily airborne pollen concentrations. The quality of life for those with allergic rhinitis is
significantly improved by forecasting these amounts and using real-time monitoring. Accurate
forecasts a few days in advance enable people to schedule their activities to prevent exposure
to excessive pollen concentrations. The focus of this study is on predicting concentrations for
three types of pollen: ragweed (Ambrosia), birch (Betula), and grass (Poaceae). Birch and
grass are responsible for the majority of allergy reactions in Europe, according to Bousquet et
al. [3], whereas ragweed is the second-most prominent allergen with the vastly enhanced clinical
relevance [19].

To precisely predict the pollen patterns, it is beneficial to account for various aspects such
as the life cycle of the plant species, meteorological data, and ecological data, aside from
the concentration of airborne pollen. As these factors differ between different locations, the
forecasting models are typically formulated for a particular plant category and region. Various
elements such as temperature, rainfall, sunshine hours, cloud cover, relative humidity, wind
speed, and wind direction can potentially impact the pollen trends [20]. According to previous
studies, temperature affects flowering season, wind speed tends to increase pollen emission,
while humidity and precipitation reduce it.

As mentioned in [20], the most extensively employed pollen observation system involves the
manual examination of a tape collected from a volumetric spore sampler that records data over
a period of 7 days. Despite the disadvantages of the system, the existing set of input data is
the optimal choice for daily operational pollen forecasting.
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1.1. Previous work

A variety of methods is used for predicting airborne pollen concentrations [13, 20]. One of the
most used approach in practice is a straightforward approach known as a pollen calendar. To
predict pollen concentration on a given day, it uses means/medians of concentrations on the
same day in previous years that are available in the dataset.

Many research papers use classical machine learning and statistical methods to determine
pollen concentrations. Csépe et al. [6] used a neural network with one hidden layer to determine
the category to which ragweed pollen concentration for a given day will belong. They used
pollen concentrations from the previous days and meteorological data based on temperature,
precipitation, wind speed, and humidity to determine the correct category.

Zewdie et al. [22] used a deep neural network with two hidden layers, random forest, extreme
gradient boosting, and Bayesian ridge algorithm to determine daily pollen concentration for
ragweed pollen. They used daily pollen concentrations and extensive meteorological and land
surface contextual data for their models.

Liu et al. [11] used random forest, neural network, and LASSO regression to determine daily
ragweed pollen concentration. They used daily pollen concentration from previous years and
85 environmental parameters from NASA MERRA meteorological analysis as input to their
models.

Lara et al. [10] used the decomposition of time series of pollen data for short- and long-
term patterns of variations and an additive model for combining components of decomposed
time series to obtain thresholds for plane tree pollen concentrations. They made predictions
based on previous daily pollen concentrations and variables based on temperature, rainfall, and
humidity.

Am Seo et al. [2] used a deep neural network (DNN)-based estimation model containing five
hidden layers to compute the oak pollen concentration, associated risk levels, and the duration
of the yearly pollen season. They employed seven distinct weather variables for this purpose.
To prevent the DNN model from over-fitting and underestimating the data, they integrated a
bootstrap aggregating-type ensemble model.

Lo et al. [12] developed and evaluated different random forest models to predict the daily
pollen concentrations for four types of pollen 1-14 days in advance. The forecasted pollen
concentration relied on a combination of meteorological and vegetational variables, and pollen
observations.

Goudarzi et al. [8] employed an artificial neural network for forecasting total pollen concen-
tration and investigated the interdependence between pollen concentrations and environmental
parameters. The ANN included an input layer containing 13 parameters, a hidden layer with
five neurons, and an output layer. Their findings indicated a negative correlation between the
pollen concentration and the relative humidity, precipitation, and air pressure, while displaying
a positive correlation with temperature.

1.2. Contribution

Since they were first proposed in the papers [17] and [21], recurrent neural networks (RNN)
have played an interesting and significant role in neural network research. They have been
successfully applied to solve a variety of problems involving time sequences of events and ordered
data [14], including machine translation [4], speech recognition [16], human action recognition
[7], robot control [9], etc. To the best of our knowledge, the application of sequence-to-sequence
RNNs to the problem of predicting pollen concentrations has not been done, although it was
used to predict air quality [15]. In our model, both encoder and decoder RNN’s use long short-
term memory (LSTM). On top of the encoder, we implemented an attention mechanism to
allow the network to learn the influence of past days on the forecast of current day’s pollen
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concentration. Moreover, we implemented two different simulation-based approaches to make
our method robust to unavoidable measurement errors in real-world scenarios.

To maintain a simplistic and easy-to-use model, while preserving its expressive capacity,
only those variables that are easily accessible and have been previously identified as influential
have been incorporated.

Unfortunately, implementations of classical machine learning methods listed in section 1.1
are not publicly available. Moreover, the data they used is also not publicly available. Thus,
comparing our approach against classical machine learning methods was not possible in practice.
Hence, we experimentally evaluated and demonstrated that our approach outperforms the pollen
calendar method, which is typically used in modern pollen prediction systems. In addition, we
show that our method outperforms pollen predictions based on patterns [5] and the naive
approach that predicts concentration for a given day by copying the pollen concentration seen
on the previous day.

1.3. Paper organization

The paper is organized as follows: Section 2 describes the methodology used for predicting pollen
concentrations and additional strategies for training, which incorporate measurement error into
the training process to make the model more robust. In section 3, an experimental setup was
given, and the results are described. Finally, section 4 gives final remarks and concludes the
paper.

2. Method

Here we formally introduce and define sequence-to-sequence RNN with attention. We refer an
interested reader to the standard textbook for more details [1] (Section 10.2.2. Attention Mech-
anisms for Machine Translations), which focuses on several ways attention can be incorporated
into neural machine translation. The schematic representation of RNN is given in Figure 1.

Let x(t) = (x
(t)
1 , x

(t)
2 , . . . , x

(t)
n )T ∈ Rn denote the vector of input features and without the loss of

generality suppose m(t) = (x
(t)
1 , . . . , x

(t)
n−1) represent meteorology data and x

(t)
n pollen concen-

tration at time t. We will assume that the length of the input to the encoder is hyperparameter
k, i.e. the k days in the past relevant for the prediction, and the length of the decoder is l, i.e.
the prediction is being made for l days in the future.

Furthermore, let (h
(t)
enc)kt=0 and (h

(t)
dec)

l
t=0 denote hidden states from the encoder and de-

coder, respectively. Our decoder RNN is forward LSTM on top of which a particular attention
mechanism is implemented enhancing the decoder hidden state. Note that each LSTM unit has

additional hidden vectors (c
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(t)
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l
t=0 (cell states) associated with it. The transition

from the encoder to the decoder is defined as follows:

h
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(1)

where h is a hyperparameter denoting the size of internal hidden LSTM vectors. After the
decoder is initialized, we provide it with meteorology data (weather forecasting data) m(t) ∈
Rn−1. More generally, in time t decoder is defined as

h
(t)
dec, c

(t)
dec = Decoder(m(t), h

(t−1)
dec , c

(t−1)
dec ). (2)

Given h
(t)
dec we further compute attention weights over h

(1)
enc, . . . , h

(k)
enc in order to give our model

additional chance to understand which days from the past are influencing the pollen concen-
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Figure 1: The architecture follows the sequence-to-sequence (encoder/decoder) approach, with
an additional attention mechanism implemented on top. At each decoding time t = 1, . . . , l,
the attention mechanism produces a softmax distribution αt that leverages the importance of

days in the past and helps compute the enhanced state H
(t)
dec. Given the enhanced state H(t),

the pollen prediction o
(t)
dec is computed.

tration at time t. The attention weights are computed as follows:

e
(t)
i = (h(i)

enc)
TW1h

(t)
dec, i = 1, . . . , k, and e(t) ∈ Rh,W1 ∈ Rh×h

α(t) = softmax(e(t)).
(3)

Letting the network learn the attention weights will enable our model to understand better
what days in history are relevant for prediction at time t. Given the attention weights, we
can compute additional contextual information a(t) of the encoder hidden states that is most
relevant from the decoder hidden state at a given time t. In other words, we define

a(t) =

k∑
i=1

α
(t)
i h(i)

enc. (4)

Finally, we create a new enhanced decoder hidden state H
(t)
dec that combines the information in

a(t) and h
(t)
dec as follows:

H
(t)
dec = tanh(W2

[
a(t)

h
(t)
dec

]
), and W2 ∈ Rh×2h, H

(t)
dec ∈ Rh. (5)

Our attention layer introduces new weight matrices W1 ∈ Rh×h and W2 ∈ Rh×2h, i.e. we
introduce an additional set of O(h2) parameters into our model. In order to gain control over
this new richer model, we introduce dropout as an additional regularization step and compute
the final scalar value in time t as pollen concentration prediction as follows:

o
(t)
dec = W · dropout(tanh(H(t)

dec)), and W ∈ Rh×1. (6)

We trained our networks with the standard mean square error (MSE) loss function

l∑
t=1

(o
(t)
dec − x(t)

n )2, (7)

where x
(t)
n stands for an actual pollen concentration value in decoding time t.
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(a) RM strategy

(b) SM strategy

Figure 2: We demonstrate for both approaches the logic during the training. Note that in the
RM approch we train R different models in parallel. SM strategy evaluates the very same
encoder on R different inputs, combine the given encoder hidden states into one, and move on
to the decoding phase.

2.1. Measurement errors

To accommodate the known measurement error uncertainties we use two different simulation-
based approaches: an approach in which we will train separate models for each dataset that
simulates measurement error in pollen concentration; an alternative and more involving ap-
proach in which different datasets simulating pollen measurement error will be exposed to just
a single RNN model.

The basic idea in both approaches is to simulate multiple data sets from a given one using
the known measurement error uncertainties (e.g. errors in the measurement system, measured
by careful calibration of the system). The common assumption is that the errors measured in
time t are i.i.d. Gaussian, i.e. ϵt ∼ N(0, σ2

t ), where σ
2
t is known or can be accurately estimated.

Note that for each time t variance σ2
t may differ, hence we refer to it as a heteroscedastic

measurement error.

Let x(i) ∈ Rn, for i = 1, . . . ,m denote our given training dataset. As before, we assume that

first n− 1 components of x(i), i.e. x
(i)
1 , . . . , x

(i)
n−1, represent meteorology data and x

(i)
n represent

pollen concentration. By sampling R times each x
(i),(r)
n ∼ N(x

(i)
n , σ2

i ), r = 1, . . . , R, for all
i = 1 . . . ,m, we generate R perturbed datasets S1, . . . , SR. Note that the meteorology data in
perturbed datasets doesn’t change.

By generating R simulated datasets and providing all of them (in some sense) to our model
we will not necessarily improve the model accuracy. Our intention is to incorporate more
reliable and more trustworthy results by giving our model the chance to absorb the knowledge
of uncertainty introduced by the measurement error.

In order to utilize R different datasets we adopt two different strategies which we will refer
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to as RM and SM strategies (RM will stand in short for computing R different Models, while
SM stands for considering R different datasets with a Single Model). In the following we will
explain both strategies in detail.

RM strategy. The easiest way of incorporating the measurement error uncertainty is to
train our model R times, i.e. on each of the R simulated data sets. Very similar approach
has been used and showed promising in a recent result of [18] in the context of incorporating
measurement error in astronomical object classification.

Given S1, . . . , SR let θ1, . . . , θR denote the optimal set of model parameters, respectively.
During the inference, all R models are evaluated and the average pollen prediction value is
reported. More precisely, the prediction scalar in time t is computed according to the following:

o
(t)
dec =

1

R

R∑
i=r

o
(t),(r)
dec , (8)

where o
(t),(r)
dec denotes the output given by equation (6), for r’th simulated data set (see Figure

2a).

SM strategy. The more involving strategy to deal with the uncertainty that comes from the
measurement error is to use a single model with weights θ and to give model a chance to ’see’
all simulated data sets during the training. Since in our model an encoder RNN is the part of
the network that is responsible for learning, we will tend to provide all R simulated data sets

to the encoder. Let h
enc,(r)
t denote the encoder hidden state in time t for data set r, where

t = 1, . . . , k and r = 1, . . . , R. Similar to (1), the transition from the encoder to the decoder is
now defined as follows:

h
(0)
dec =

1

R

R∑
r=1

h(k),(r)
enc ∈ Rh

c
(0)
dec =

1

R

R∑
r=1

c(k),(r)enc ∈ Rh.

(9)

After the transition from the encoder to the decoder has been made, the decoding decoder RNN
proceeds exactly as before. Note that we indeed trained R different encoder RNNs but they all
share the same weights (see Figure 2b).

3. Experiments

All experiments were done using pollen concentrations and meteorological data for the city of
Novi Sad from the year 2000 to the year 2021. The data came from RealForAll project (”Real-
time measurements and forecasting for successful prevention and management of seasonal aller-
gies in Croatia-Serbia cross-border region” - RealForAll (2017HR-RS151) -
https://www.realforall.com/) which was active from 15.07.2017. to 14.01.2020. and dealt with
forecasting pollen concentrations from day to day.

All our implementations are publicly available under the MIT Licence and can be accessed at
https://github.com/dmatijev/polen forcasting. The data presented in this study are available
on request from the corresponding author.

The data consists of average daily pollen concentrations and meteorological data. The
daily pollen concentrations are measured for three types of pollen: ragweed (Ambrosia), birch
(Betula), and grass (Poaceae). Pollen concentrations were collected using the 7-day volumetric
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Pollen Model dropout lrn. rate batch size hidden dim. seq. length

ragweed PollenNet 0.1 0.001 32 256 7
birch PollenNet 0.1 0.005 128 256 7
grass PollenNet 0.25 0.005 128 64 7

ragweed RM 0.1 0.001 32 256 7
birch RM 0.1 0.005 128 256 7
grass RM 0.25 0.005 128 64 7

ragweed SM 0.25 0.005 1 64 5
birch SM 0.1 0.005 1 64 7
grass SM 0.1 0.001 1 64 7

Table 1: Hyperparameters values selected after cross-validation

spore trap of the Hirst design and are measured as the number of particles per cubic meter of
air (P/m3). The meteorological data mainly consists of temperature, wind, and rainfall data.
For the experiments, the following meteorological data was used: minimal daily temperature
(MNT), maximal daily temperature (MKT), precipitation (PAD), relative humidity (VLZ), and
maximum daily wind speed (MBV).

For every of the three pollen types, all three models (PollenNet, RM, and SM strategy)
described in section 2 were used, and the obtained results are compared to the pollen calendar,
the naive model, and the prediction based on patterns ([5]).

The pollen calendar predicts pollen concentration for a given day by taking the mean value
of pollen concentrations on that day in all previously available years.

The naive model predicts pollen concentration for a given day simply by copying the pollen
concentration from the previous day, i.e., the model states that pollen concentration for today
will be the same as yesterday’s observed pollen concentration. If one wants to predict pollen
concentration two days in advance using this naive model, the pollen concentration for today
and tomorrow will be the same as yesterday’s pollen concentration. This naive model serves as
a baseline to see if the proposed new models improve pollen predictions.

The prediction based on patterns uses clustering of patterns, and computes a prediction
of the target value as the mean of values from the same cluster, minimizing the total squared
deviation between predicted and actual values of the target variable. Every pattern consists of
consecutive days where pollen concentrations grow to the local maxima and fall down until the
end of the pattern. Several features are calculated for every pattern, and patterns are clustered
into similar groups based on them. In order to predict pollen concentration for a new day, one
should make a pattern consisting of previous days leading up to that day, determine to which
cluster the new pattern belongs, and then predict the pollen concentration value based on the
mean of values in the same cluster. This approach can predict pollen concentration only one
day in advance.

For all approaches, the dataset was reduced to only those months of the year where the
corresponding pollen is present. So for ragweed pollen, only days in July, August, September,
and October were used; for birch pollen, only days in March, April, and May were used, while
for grass pollen, days in April, May, June, July, August, September and October were used.
Outside of given months, predictions of pollen concentrations are equal to zero.

3.1. Results

For all our models and different data inputs (ragweed, birch or grass), we have determined the
optimal values for the following hyperparameters: the batch size, the input sequence length
(i.e., the number of days before the one for which the prediction is calculated), the learning
rate, the hidden dimension of hidden states and the dropout rate using cross-validation.
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Experiment Training years Validation years Test years

exp1 2000 - 2011 2012, 2013 2014, 2015
exp2 2000 - 2012 2013, 2014 2015, 2016
exp3 2000 - 2013 2014, 2015 2016, 2017
exp4 2000 - 2014 2015, 2016 2017, 2018
exp5 2000 - 2015 2016, 2017 2018, 2019
exp6 2000 - 2016 2017, 2018 2019, 2020
exp7 2000 - 2017 2018, 2019 2020, 2021

Table 2: List of years used for training, validating and testing the models

3.1.1. Cross-validation

Cross-validation is a commonly used technique for determining optimal hyperparameters in
machine learning models. Cross-validation can prevent overfitting and help evaluate the model
performance more robustly than a simple train-test approach. In cross-validation, the available
data is split into k equally sized subsets (known as ”folds”). The model is then trained on k−1
of the folds and evaluated on the remaining fold. This process is repeated k times, with each
of the k folds being used as the evaluation set once. The results from each of the k evaluations
are averaged to produce a final performance metric for the model. Specifically, our approach
chooses two consecutive years for testing and all the remaining years for training. Then the
next two consecutive years are used for testing, and the remaining year for training, etc.

To perform cross-validation for hyperparameter tuning, we set the hyperparameter search
space as follows: the dropout rate was selected from {0.1, 0.25}, the learning rate from {0.001, 0.005},
the batch size from {1, 32, 64, 128}, the hidden dimension from {64, 128, 256} and the input se-
quence length from {3, 5, 7}.

We trained our models on the training data for each combination of hyperparameters (the
grid search approach) using k-fold cross-validation. The MSE loss was calculated for each
fold, and the average performance over all k folds was used as the final evaluation for each
hyperparameter combination. The hyperparameters with the best performance were chosen for
the different data inputs (see Table 1).

3.1.2. Models evaluation

After determining the needed parameters, models were trained on a given set of years, validated
on two consecutive years, which come after the training years, and tested on two consecutive
years, which come after the validation years. The complete set of years for conducted exper-
iments can be seen in Table 2, where column Experiment denotes the ordinal number of the
experiment, columns Training years, Validation years and Test years show which years were
used for training, validation, and testing, respectively in a given experiment.

Tables 3, 4 and 5 give a comparison of MSE loss on given test years for predictions of pollen
concentrations one day (rows day 1 ) and two days (rows day 2 ) in advance by using PollenNet
(column PollenNet), RM strategy (column RM ), SM strategy (column SM ), the pollen calendar
(column pollenCal), naive model (column naive) and predictions based on patterns (column
patterns) for ragweed, birch and grass pollen, respectively. Additionally, average MSE loss
values and standard deviations of given values are calculated for all test years to compare how
different models behave on all test sets.

All tables denote the best-obtained values for given test years and a given day in bold.
RNN-based models almost always outperform the naive model and consistently outperform
predictions obtained by the pollen calendar and using patterns. Usually, RM and SM outper-
form the PollenNet model, which justifies their usage. Incorporating measurement error into
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learning helps the network to obtain better predictions on unseen examples.

test years PollenNet RM SM pollenCal naive patterns

2014-2015
day 1 106.314 95.249 98.784 100.001 115.941 106.185
day 2 120.153 99.715 102.820 100.001 133.056 -

2015-2016
day 1 100.807 100.652 102.666 111.911 122.055 115.452
day 2 108.617 107.512 109.855 111.911 132.505 -

2016-2017
day 1 101.173 91.016 86.328 93.521 102.238 103.855
day 2 111.628 102.970 93.722 93.521 113.899 -

2017-2018
day 1 96.686 98.359 103.111 119.500 95.853 121.691
day 2 106.915 108.648 111.725 119.500 123.665 -

2018-2019
day 1 102.442 102.431 99.631 152.352 103.634 153.635
day 2 106.448 110.341 101.504 152.352 132.972 -

2019-2020
day 1 87.802 80.247 84.586 128.206 97.041 141.626
day 2 92.040 86.790 89.940 128.206 116.936 -

2020-2021
day 1 73.778 71.071 75.133 91.161 90.273 107.852
day 2 83.544 80.818 84.569 91.161 105.044 -

average
day 1 95.572 91.289 92.891 113.807 103.862 121.471
day 2 104.192 99.542 99.162 113.807 122.582 -

stdev
day 1 11.240 11.606 10.859 21.772 11.364 19.177
day 2 12.357 11.460 10.154 21.772 11.046 -

Table 3: Comparison of MSE loss for ragweed pollen predictions for different models

test years PollenNet RM SM pollenCal naive patterns

2014-2015
day 1 252.237 277.768 240.754 358.024 311.701 360.312
day 2 282.447 298.123 278.078 358.024 421.365 -

2015-2016
day 1 145.674 143.772 146.431 235.990 172.992 234.667
day 2 174.732 172.630 210.986 235.990 255.135 -

2016-2017
day 1 135.099 132.285 150.880 203.065 158.929 201.156
day 2 151.369 156.970 172.168 203.065 225.499 -

2017-2018
day 1 107.902 100.303 99.380 132.278 121.699 128.166
day 2 109.783 119.650 115.024 132.278 155.646 -

2018-2019
day 1 108.938 109.199 116.159 135.729 111.567 115.825
day 2 132.168 128.211 115.195 135.729 153.656 -

2019-2020
day 1 160.434 154.132 157.206 191.875 188.293 187.979
day 2 177.151 172.947 183.739 191.875 237.441 -

2020-2021
day 1 173.777 159.672 166.626 186.587 194.097 204.086
day 2 184.510 182.441 190.867 186.587 247.253 -

average
day 1 154.866 153.876 153.920 206.221 179.897 204.599
day 2 173.166 175.853 180.865 206.221 242.285 -

stdev
day 1 49.430 58.903 45.052 76.342 66.065 80.790
day 2 55.171 58.875 56.553 76.342 89.374 -

Table 4: Comparison of MSE loss for birch pollen predictions for different models

Based on the average MSE loss for pollen concentrations of ragweed (Table 3), for one day
in advance, the RM gives the smallest loss, i.e., it gives the best pollen predictions on average
for unseen instances, while for two days in advance, the SM gives the smallest loss, although
the RM is also very close in value. Also, based on standard deviations of MSE losses for pollen
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test years PollenNet RM SM pollenCal naive patterns

2014-2015
day 1 11.742 11.690 12.172 14.793 13.358 12.684
day 2 12.663 12.738 12.762 14.792 17.293 -

2015-2016
day 1 15.472 15.351 15.428 18.025 19.123 15.962
day 2 16.041 16.193 16.164 18.025 22.542 -

2016-2017
day 1 12.647 12.539 12.645 13.746 16.729 14.417
day 2 12.787 12.645 12.598 13.746 18.003 -

2017-2018
day 1 8.248 8.256 8.108 12.585 8.943 9.373
day 2 8.923 8.939 8.671 12.585 10.194 -

2018-2019
day 1 8.293 7.679 7.705 13.238 7.402 7.395
day 2 9.467 8.639 8.382 13.238 9.148 -

2019-2020
day 1 5.052 4.954 4.858 9.837 6.230 6.618
day 2 6.031 5.409 5.332 9.837 7.280 -

2020-2021
day 1 9.217 9.193 9.384 13.614 9.605 11.573
day 2 10.791 10.676 10.859 13.614 12.321 -

average
day 1 10.096 9.952 10.043 13.691 11.627 11.146
day 2 10.958 10.748 10.681 13.691 13.826 -

stdev
day 1 3.440 3.475 3.578 2.459 4.890 3.516
day 2 3.234 3.499 3.560 2.459 5.562 -

Table 5: Comparison of MSE loss for grass pollen predictions for different models

predictions, the SM has the least dispersed values, although the standard deviations for other
models are not much more different than those of SM.

In Table 4, for one day in advance, RM has the smallest average MSE loss for birch pollen
concentration predictions, similar to ragweed pollen, but the average loss for SM is very similar
to that of RM. For two days in advance, the PollenNet has the smallest mean MSE loss and
the smallest standard deviation, i.e., the best pollen predictions, which are the least dispersed
of all observed models. On the other hand, the dispersion is the smallest on SM for one day
in advance, which can indicate (considering the small average MSE loss) that for one day in
advance, SM could be used to predict birch pollen concentrations.

For grass pollen concentrations (Table 5), all three RNN-based models perform similarly
and have almost the same standard deviations of obtained MSE losses, which means that any
of the three proposed methods can be used to predict grass pollen concentrations.

Figure 3 compares daily pollen concentrations and daily pollen predictions obtained by
PollenNet, RM, and SM for one day and two days in advance in 2020 and 2021 for ragweed,
birch, and grass pollen, respectively. For all types of pollen and all types of proposed models,
the predicted concentrations follow the trend of movement of daily pollen concentrations. It can
also be noticed that the birch pollen concentrations achieve the highest values, which explains
the largest MSE loss values in Table 4. It can also be seen that for that type of pollen, proposed
models never achieve those peak values. They always underestimate pollen concentrations in
those cases. However, it can be noted that the predicted values for those days are larger than
those for the days before and after the peak in real value, which means that the models can
predict when the peak will occur. The possible reason for this behavior is that the extreme
values are scarce in the dataset, and the model adapts to most values in the dataset, which are
significantly smaller than those peak values.

For ragweed and grass pollen predictions, the predicted peaks are much closer to the actual
peaks because the range of real pollen concentrations is much smaller than for the birch. This
can also be noted in corresponding tables where MSE loss values are much smaller than for
birch pollen.
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(a) PollenNet (b) RM (c) SM

Figure 3: The comparison of real daily pollen concentrations and daily pollen predictions ob-
tained by PollenNet, RM, and SM for one day and two days in advance in 2020 and 2021 for
ragweed, birch, and grass pollen. The values on the x-axis represent the ordinal number of
datapoint in the dataset, while the values on the y-axis represent average daily pollen concen-
trations.
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4. Conclusion

In the present study, the PollenNet model, which utilizes a sequence-to-sequence RNN with an
attention layer, was employed to establish the nonlinear relationship between pollen concen-
trations and meteorological data. To ensure a simple and user-friendly model without com-
promising its explanatory power, only those variables that are easily accessible and have been
previously identified as influential were included. To make our approach more robust to un-
avoidable measurement errors, we have adopted two simulation-based approaches that have
significantly improved the learning phase of our method.

In order to validate the model’s efficacy, it was compared against established methods com-
monly used for predicting airborne pollen concentration. In the majority of experiments con-
ducted, the new model demonstrated superior performance compared to the traditional ap-
proaches.

However, the prediction of peak pollen concentrations requires improvement, as the results
indicate that the model cannot properly simulate severe and extreme grades. Moreover, as
expected, the forecasting accuracy diminishes over time. Possible strategies to improve the
model in both cases could be adding or removing different variables. Further research is required
to identify the optimal and most appropriate model.

This research can serve as a foundation for utilizing RNNs in predicting airborne pollen
concentrations, given that modern RNNs are ideally suited for such tasks.
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[4] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for
statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 1724–1734. doi: 10.3115/v1/D14-1179
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