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Abstract. Data modeling/aggregating, in many uncertain real-world’ problems such as decision-
making processes, has gotten more attention in recent years. Due to a variety of uncertainty sources,
various types of fuzzy sets, and various types of averaging-based aggregation functions have been pro-
posed. The power average operator (PAO), as a nonlinear operator, is more appropriate than other
averaging-based functions for situations where different values are given on a single subject. In this
paper, PAO will be extended to be used in the aggregation process of given pseudo-hesitant fuzzy
elements (pseudo-HFEs), and some needed properties have been discussed, too. Then, four kinds of
PAO with pseudo-HFEs, i.e., power average operator of pseudo-HFEs, power weighted average operator
of pseudo-HFEs, power ordered weighted average operator of pseudo-HFEs and power hybrid average
operator of pseudo-HFEs, will be defined. To solve a multi-attribute group decision-making (MAGDM)
problem, the evaluation step done by both decision-makers and self-assessment will be quantified by
pseudo-HFEs. Then the PAO will be applied to aggregate the row elements of the resulting decision
matrix. The ranking orders of obtained pseudo-HFEs, show the options’ orders. Finally, the proposed
method will be used to solve a multi-attribute group decision-making problem, illustrated numerically,
analyzed, and validated.
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1. Introduction

Data processing/mining, which are usually modeled numerically, are important tasks in many
real-world problems, such as decision-making processes. Many theories [18, 22], pythagorean
fuzzy sets [2], neutrosophic sets [24], hesitant fuzzy sets (HFSs) [6], hesitant fuzzy numbers
(HFNs) [7], etc., have long been proposed to model uncertain information. Since the presen-
tation of HFSs, they have absorbed many researchers and defined some other needed tools in
their practical applications [19, 7]. It can be explained in terms of the threefold classification of
real-world’ problems, i.e., organized simplicity problems, organized complexity problems, and
disorganized complexity problems [9].
Contrary to the previously mentioned triple categories of real-world problems, and diversity of
uncertainty sources, HFSs have been extended to new kinds [10, 14, 1], recently. Also, HFSs
have been extended to real values, which are called HFNs and generalized HFNs (GHFNs)[7, 8].
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As the HFNs in their current format may not be satisfied in normality condition, which is nec-
essary for fuzzy numbers, we called them pseudo-HFEs in this paper.

Some practical decision-making problems involve a finite set of options that must be ranked
against a finite set of criteria. Such issues are called multi-attribute decision making (MADM)
problems, and there are many methods to solve them, especially in uncertain environments
[12]. PAO as a non-linear averaging operator [21], was extended to aggregate vague/uncertain
information and applied with HFSs to solve a group decision-making problem [11, 13, 16].

Making a good decision or finding a good solution to a MADM problem, clearly entails how
to do well phases of evaluation, modeling, and aggregation, simultaneously. In this article, we
will propose some methods based on self-assessment and the direct judgments of evaluators
decision-makers (DMs), to reach this target.

I) With the aim of enjoying the benefits of impartial refereeing and self-evaluation of knowl-
edgeable managers, they will be combined to achieve results closer to reality.

II) In the modeling phase, we’ll use the pseudo-HFEs.

III) In the aggregation phase, due to the definition of support function based on pairwise dis-
tance measures of input pseudo-HFEs, new methods for arithmetic operations of pseudo-
HFEs and their score function using PA operator will be suggested. Then, PA operator
will be extended to aggregate pseudo-HFEs, power average operator of pseudo-HFEs
(PA−HFN), power weighted average operator of pseudo-HFEs (PWA−HFN), power
ordered weighted average operator of pseudo-HFEs (POWA−HFN) and power hybrid
average operator of pseudo-HFEs (PHA−HFN) operators will be proposed.

This generalization of the PA operator on HFNs has a fundamental difference with the
Yager’ method in how to compute the total support T (ÃH

i ). Also, we will prove that the
PA−HFN operator, unlike the HFPA operator [23], is bounded and idempotent. The hybrid
method will be applied to solve a MADM problem and the validity of the obtained result will
be checked by criteria validity tests [17].

In the following: Some useful preliminaries and definitions that are necessary for other
sections will be reviewed in Section 2. Section 3 presents the newly proposed score function and
a new method for the arithmetic operation of pseudo-HFEs. The power average of pseudo-HFEs
and their varieties, solving a MADM problem with pseudo-HFEs are expressed in Sections 4 and
5. The numerical description of the proposed methods and their validation will be presented in
Section 6. The conclusion of this paper is given in Section 7.

2. Definitions and Preliminaries

In this section, some basic concepts which, are necessary for other parts will be reviewed.

Definition 1 [4] Let I be an interval from real numbers. An aggregation function in In is
a non-decreasing and bounded function A(n) : In → I that

infx∈InA
(n)(x) = infI, supx∈InA

(n)(x) = supI,

and
i)A(1)(x) = x, ii)A(n)(x, x, ..., x) = x,
iii)A(n)(x1, x2, ..., xn) ≤ A(n)(y1, y2, ..., yn) if ∀1 ≤ i ≤ n we have xi ≤ yi.

For arbitrary values, a and b, Supp(a, b) is called the support for a from b and satisfied in:
1)Supp(a, b) = Supp(b, a); 2)Supp(a, b) ∈ [0, 1];
3) If |x− y| < |a− b|, then Supp(a, b) < Supp(x, y).
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Definition 2[16] PA of values a1, a2, . . . , an, is denoted by PA(a1, a2, . . . , an) and defined as

PA(a1, a2, . . . , an) =

∑n
i=1(1 + T (ai))ai∑n
i=1(1 + T (ai))

,

where, T (ai) =
n∑

j=1
j ̸=i

Supp(ai, aj).

Definition 3[12] Let X be a fixed set. An HFS E on X is in terms of a function h that
belongs to a subset of [0, 1].

In general [12], E = {< x, h(x) > |x ∈ X} is a mathematical representation of the defined
HFS E on X, and hesitant fuzzy element (HFE) h(x), as membership degrees of x ∈ X to the
set E, is a finite set of some values in [0, 1].
Arithmetic operations and aggregation functions of HFEs are needed in some real applications
[12].
Definition 4[12] Let hj(j = 1, 2, . . . , n) be a collection of HFEs, and w = (w1, w2, . . . , wn)
with wi ∈ [0, 1],

∑n
i=1 wi = 1 be the weight vector of given HFEs, then

(i) An adjusted hesitant fuzzy weighted averaging (AHFWA) operator is a mapping Fn → F

such that AHFWA(h1, h2, . . . , hn) = ⊕n
j=1wjhj =

{
1−Πn

j=1(1− h
σ(t)
j )wj |t = 1, 2, . . . , l

}
,

(ii) An adjusted hesitant fuzzy weighted geometric (AHFWG) operator is a mapping Fn → F

such that AHFWG(h1, h2, . . . , hn) = ⊗n
j=1(hj)

wj =

{
Πn

j=1(h
σ(t)
j )wj |t = 1, 2, . . . , l

}
.

HFSs were also extended to a new type, called HFNs, which includes the real part and
membership part [7], and is defined as follows.

Definition 5[7] Let X be the reference set and a ∈ R, an HFN ÃH in the set of real numbers
R is defined as ÃH = ⟨a, h(a)⟩, where HFE h(a) is a finite set of some values in [0, 1], are
considered as membership degrees of a ∈ X.

Definition 6[7] Let ÃH = ⟨a, h(a)⟩ and B̃H = ⟨b, h(b)⟩ be two HFNs and λ > 0, then
(1) ÃH ⊕ B̃H = ⟨a+ b, h(a) ∪ h(b)⟩, where h(a) ∪ h(b) =

⋃
γ1∈h(a),γ2∈h(b)

max{γ1, γ2}

(2) λÃH = ⟨λa, h(a)⟩,
(3) (ÃH)λ = ⟨aλ, h(a)⟩,
(4) ÃH ⊗ B̃H = ⟨a.b, h(a) ∩ h(b)⟩, where h(a) ∩ h(b) =

⋃
γ1∈h(a),γ2∈h(b)

min{γ1, γ2}.

Definition 7[7] Let ÃH = ⟨a, h(a)⟩ with h(a) = {γ1, γ2, . . . , γn} be a HFN that γi ∈ [0, 1]
are possible satisfaction degrees. Then
(1) mean value (or the score function) of HFN ÃH is displayed as MV (ÃH) and defined as

MV (ÃH) =
a

n

n∑
i=1

γi.

(2) hesitant degree of HFN ÃH is defined as Π(ÃH) = a

√
1

n

n∑
i=1

(MV (ÃH)− γi)2.

Definition 8[3] Consider two HFNs ÃH = ⟨a, h(a)⟩ and B̃H = ⟨b, h(b)⟩ where, a, b ∈ R, h(a)
with cardinality |h(a)| = k and h(b) with cardinality |h(b)| = l are two sets of some values
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in [0, 1]. The Euclidean distance (de) and Hamming distance (dh) of these two HFNs were be
defined as follows:

de(Ã
H , B̃H) =

√√√√√ 1

1 + k × l

(
|a− b|2 +

∑
γi∈h(a),
γj∈h(b)

|γi − γj |2
)
, (1)

dh(Ã
H , B̃H) =

1

1 + k × l

(
|a− b|+

∑
γi∈h(a),
γj∈h(b)

|γi − γj |
)
. (2)

3. Some new concepts about pseudo-HFEs

In this section, considering that in the common definition of HFNs, all degrees of hesitation
may be strictly less than one, the normality condition is not fulfilled, we renamed the HFNs
to pseudo-HFEs, and the Def. 5 will be corrected as Def. 9, firstly. Then, the arithmetic
operations of pseudo-HFEs, and the score function of pseudo-HFEs will be updated.

Definition 9 Let X be the reference set. An extended HFS on X, with mathematical repre-
sentation Ẽ = {⟨x, H̃(x)⟩|x ∈ X}, is in terms of a function H̃(x) that for each x ∈ X returns a
pseudo-HFEs ÃH = ⟨a, h(a)⟩, in which a ∈ R, and h(a) is a finite set of some values in [0, 1].

For simplicity the pseudo-HFEs ÃH = ⟨a, h(a)⟩ will be used in practical applications of ex-
tended HFS Ẽ.

Definition 10 Let ÃH = ⟨a, h(a)⟩ and B̃H = ⟨b, h(b)⟩ be two pseudo-HFEs and λ > 0,
then
(1) ÃH ⊕ B̃H = ⟨a+ b, h(a) ∪ h(b)⟩, (2) λÃH = ⟨λa, h(a)⟩,
(3) (ÃH)λ = ⟨aλ, h(a)⟩,
(4) ÃH⊗B̃H = ⟨a.b, h(a)∩h(b)⟩, if h(a)∩h(b) = ∅, then h(a)∩h(b) =

⋃
γi∈h(a), γj∈h(b)

min{γi, γj}.

The new proposed score function is based on PA operator of pseudo-HFEs.

Definition 11 Let ÃH = ⟨a, h(a) = {γ1, γ2, . . . , γn}⟩ be a pseudo-HFEs. Then,
(1) its score can be obtained as:

Score(ÃH) = a× PA(γ1, γ2, . . . , γn) = a×

n∑
j=1

(1 + T (γj))γj

n∑
j=1

(1 + T (γj))
, (3)

where, T (γj) =
n∑

k=1,k ̸=j

Supp(γj , γk), Supp(γj , γk) = 1− |γj − γk|.

(2) its variance is

V ar(ÃH) = a×

√√√√√ 1

n− 1

n∑
i=1,
i ̸=j

(γj − γi)2. (4)

Definition 12 Let ÃH
1 and ÃH

2 be two pseudo-HFEs to be compared. Then
(i)ÃH

1 ≺ ÃH
2 (ÃH

1 ≻ ÃH
2 ) if Score(ÃH

1 ) < Score(ÃH
2 ) (Score(ÃH

1 ) > Score(ÃH
2 ));

(ii)ÃH
1 ≺ ÃH

2 (ÃH
1 ≻ ÃH

2 ) if Score(ÃH
1 ) = Score(ÃH

2 ) & V ar(ÃH
1 ) > V ar(ÃH

2 )
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(V ar(ÃH
1 ) < V ar(ÃH

2 ));

Note: For any two pseudo-HFEs ÃH
1 and ÃH

2 with the same real part and differences in
at least one of the elements of their membership sets, we cannot say ÃH

1 = ÃH
2 if Score(ÃH

1 ) =
Score(ÃH

2 ) & V ar(ÃH
1 ) = V ar(ÃH

2 ). In this case, they are compared based on the maximum
values (optimistic case) or minimum values (pessimistic case) in their membership sets. If these
values are equal, by considering the values in the next ranks, the process will be done.

Theorem 1 Consider two pseudo-HFEs ÃH = ⟨a, h(a)⟩ and B̃H = ⟨b, h(b)⟩, and let λ > 0. If
ÃH ≺ B̃H (ÃH ≻ B̃H), then λÃH ≺ λB̃H (λÃH ≻ λB̃H).

Proof. Let ÃH = ⟨a, h(a)⟩ and λ > 0. We know that λÃH = ⟨λa, h(a)⟩. Then, it is obvious
that Score(λÃH) = λa× PA(h(a)) = λScore(ÃH), and V ar(λÃH) = λV ar(ÃH).
Now, let ÃH ≺ B̃H . Regarding to Def. 12, one of the following is true:

(i)Score(ÃH) < Score(B̃H). Then as in Eq. (3) and Def. 12, we have

a× PA(h(a)) < b× PA(h(b)) ⇒ λa× PA(h(a)) < λb× PA(h(b)) ⇒ λÃH ≺ λB̃H .

(ii)Score(ÃH) = Score(B̃H) & V ar(ÃH) > V ar(B̃H). As in Def. 12, it is easy to see that
λV ar(ÃH) > λV ar(B̃H), and then λÃH ≺ λB̃H .

(iii)Score(ÃH) = Score(B̃H) & V ar(ÃH) = V ar(B̃H). The proof is clear.

In the following example, the new score function is used to rank pseudo-HFEs compared
with the previous one.

Example 1 Let ÃH
1 = ⟨3; {.1, .2, .6, .7}⟩ and ÃH

2 = ⟨3; {.2, .3, .4, .7}⟩ be two pseudo-HFEs.
Based on the proposed method in this paper, Score(ÃH

1 ) = 1.2, Score(ÃH
2 ) = 1.167, and then

ÃH
1 ≻ ÃH

2 , while by using the proposed method in [7] ÃH
2 ≻ ÃH

1 , because their scores are equal
and ÃH

2 has less variance than ÃH
1 . As we can see from the given pseudo-HFEs, ÃH

1 has two
big membership degrees, which makes the result of our method acceptable.

4. Aggregation of pseudo-HFEs using PA operator

A new aggregation method for pseudo-HFEs will be introduced in this section.

Definition 13 Let ÃH
i = ⟨ai, h(ai)⟩, i = 1, 2, . . . , n (n ≥ 3) be pseudo-HFEs, then

PA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

n∑
i=1

[(1 + T (ÃH
i ))ÃH

i ]

n∑
i=1

(1 + T (ÃH
i ))

,

is called PA of pseudo-HFEs (PA-HFN) where, T (ÃH
i ) =

n∑
j=1,j ̸=i

Supp(ÃH
i , ÃH

j ) and for each

i, j: Supp(ÃH
i , ÃH

j ) is the support for pseudo-HFE ÃH
i from pseudo-HFE ÃH

j , satisfying in the
following properties:

1)Supp(ÃH
i , ÃH

j ) = Supp(ÃH
j , ÃH

i );

2)Supp(ÃH
i , ÃH

j ) ∈ [0, 1];

3) If dh(Ã
H , B̃H) < dh(C̃

H , D̃H) then Supp(ÃH , B̃H) > Supp(C̃H , D̃H), where dh is the
Hamming distance, which can be replaced by de (Euclidean distance).
Theorem 2 For a collection ÃH

i = ⟨ai, h(ai)⟩, i = 1, 2, . . . , n (n ≥ 3) of pseudo-HFEs, their
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aggregated value by PA-HFN operator, i.e., PA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) is also a pseudo-HFE,

and then

PA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

〈 n∑
i=1

[(1 + T (ÃH
i ))ai]

n∑
i=1

(1 + T (ÃH
i ))

,

n⋃
i=1

h(ai)

〉
.

Proof. Based on Definitions 10 and 13, it is easy to see that the proposed PA−HFN operator
has two distinct types of behavior: the real part of the input will be affected by the PA operator,
while the membership degrees of the inputs will be affected by the union operator. Therefore,
the output of this operator will have two real and membership parts.

Theorem 3 Suppose ÃH
i , i = 1, 2, . . . , n (n ≥ 3) be pseudo-HFEs. If the support function

is assumed to be constant for all values: Supp(ÃH
i , ÃH

j ) = k (i ̸= j), then PA − HFN is

arithmetic average, i.e., PA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

n∑
i=1

ÃH
i

n .

Proof. For each i ̸= j set Supp(ÃH
i , ÃH

j ) = k. Then, T (ÃH
i ) = (n− 1)k and

PA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

n∑
i=1

(1+(n−1)k)ÃH
i

n∑
i=1

(1+(n−1)k)
=

n∑
i=1

(1+(n−1)k)ÃH
i

n(1+(n−1)k) =

n∑
i=1

ÃH
i

n .

Boundedness, Commutativity and Idempotency properties, for PA −HFN operator will
be discussed in the following theorem.
Theorem 4 Suppose ÃH

i , i = 1, 2, . . . , n (n ≥ 3) be pseudo-HFEs, then
1) The boundary condition is true for PA−HFN operator, i.e.

min(ÃH
1 , ÃH

2 , . . . , ÃH
n ) ≤ PA−HFN(ÃH

1 , ÃH
2 , . . . , ÃH

n ) ≤ max(ÃH
1 , ÃH

2 , . . . , ÃH
n );

2) Idempotency is verified for PA−HFN , i.e.

PA−HFN(ÃH , ÃH , . . . , ÃH) = ÃH ;

3) For any permutation {Ã(1), Ã
H
(2), . . . , Ã

H
(n)} of {ÃH

1 , ÃH
2 , . . . , ÃH

n }, we have

PA−HFN(ÃH
(1), Ã

H
(2), . . . , Ã

H
(n)) = PA−HFN(ÃH

1 , ÃH
2 , . . . , ÃH

n ).

Proof. 1) For simplicity, let wi =
1+T (ÃH

i )
n∑

i=1
(1+T (ÃH

i ))
. Then, ∀i = 1, 2, · · · , n : 0 ≤ wi ≤ 1,

n∑
i=1

wi = 1,

and

PA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

n∑
i=1

1 + T (ÃH
i )

n∑
i=1

(1 + T (ÃH
i ))

ÃH
i =

n∑
i=1

wiÃ
H
i .

Define ÃH
(1) = min{ÃH

1 , ÃH
2 , . . . , ÃH

n }, and ÃH
(n) = max{ÃH

1 , ÃH
2 , . . . , ÃH

n }. Then, we’ll have

∀ i = 1, 2, · · · , n : ÃH
(1) ≤ ÃH

i ≤ ÃH
(n) ⇒ wiÃ

H
(1) ≤ wiÃ

H
i ≤ wiÃ

H
(n) (Based on Theorem 1) ⇒

n∑
i=1

wiÃ
H
(1) ≤

n∑
i=1

wiÃ
H
i ≤

n∑
i=1

wiÃ
H
(n) ⇒ ÃH

(1)

n∑
i=1

wi ≤
n∑

i=1

wiÃ
H
i ≤ ÃH

(n)

n∑
i=1

wi ⇒

ÃH
(1) ≤

n∑
i=1

wiÃ
H
i ≤ ÃH

(n).
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That is PA−HFN is a bounded operator.
2) Let ÃH

i = ÃH , i = 1, 2, . . . n, and n ≥ 3, i.e., the given pseudo-HFEs are all equal. Then,
according to [21], the support function of each pairwise of them is constant, i.e.,

∀i ̸= j : Supp(ÃH
i , ÃH

j ) = k ⇒ T (ÃH
i ) =

n∑
j=1,j ̸=i

Supp(ÃH
i , ÃH

j ) =

n∑
i=1

k = (n− 1)k.

Thus, PA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

n∑
i=1

(1 + T (ÃH
i ))ÃH

i

n∑
i=1

(1 + T (ÃH
i ))

=

n∑
i=1

(1 + (n− 1)k)ÃH

n(1 + (n− 1)k)
=

n(1 + (n− 1)k)ÃH

n(1 + (n− 1)k)
= ÃH .

That is PA−HFN is an idempotent operator.
3) Let {Ã(1), Ã

H
(2), . . . , Ã

H
(n)} be any permutation of given pseudo-HFEs {ÃH

1 , ÃH
2 , . . . , ÃH

n }.
Then for each 1 ≤ j ≤ n there exist one and only one i (1 ≤ i ≤ n) such that Ã(j) = Ãi.

Therefore, ∀1 ≤ i, j ≤ n we have T (ÃH
(j)) = T (ÃH

i ), and

PA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

〈 n∑
i=1

[(1 + T (ÃH
i ))ai]

n∑
i=1

(1 + T (ÃH
i ))

,

n⋃
i=1

h(ai)

〉
=

〈 n∑
j=1

[(1 + T (ÃH
(j)))a(j)]

n∑
j=1

(1 + T (ÃH
(j)))

,

n⋃
j=1

h(a(j))

〉
= PA−HFN(ÃH

(1), Ã
H
(2), . . . , Ã

H
(n)).

The PA-HFN operator would be extended for pseudo-HFEs with different importance de-
grees. Then, power weighted average operator of pseudo-HFEs (PWA-HFN) can be defined.

Definition 14 Let wi ≥ 0 with
n∑

i=1

wi = 1 be the weight of ith pseudo-HFEs ÃH
i , i =

1, 2, . . . , n (n ≥ 3), then

PWA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

n∑
i=1

[(1 + wiT (Ã
H
i ))wiÃ

H
i ]

n∑
i=1

(1 + wiT (ÃH
i ))wi

, (5)

where, T (ÃH
i ) =

n∑
j=1,j ̸=i

Supp(ÃH
i , ÃH

j ).

Definition 15 Let for i = 1, 2, . . . , n (n ≥ 3), ÃH
(i) be a permutation of pseudo-HFEs ÃH

i ,

such that ÃH
(1) ≤ ÃH

(2) ≤ . . . ≤ ÃH
(n), then POWA − HFN(ÃH

1 , ÃH
2 , . . . , ÃH

n ) =
n∑

k=1

ωkÃ
H
(k),

where ωk = Q(Rk/T V) − Q(Rk−1/T V),Rk =
k∑

m=1
V (ÃH

(m)), T V =
n∑

m=1
V (ÃH

(m)), V (ÃH
(m)) =

1+T (ÃH
(m)), Q : [0, 1] −→ [0, 1] as a basic unit interval monotonic (BUM) function satisfied in:

Q(0) = 0,Q(1) = 1, and for each s > t then Q(s) > Q(t). Supp(ÃH
(m), Ã

H
(l)) is the support of lth
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largest value for mth largest value, and T (ÃH
(m)) is the total support of mth largest pseudo-HFE

by all the other ones, i.e., T (ÃH
(m)) =

n∑
l=1, l ̸=m

Supp(ÃH
(l), Ã

H
(m)).

Note: For some special forms of BUM function Q, we get:

1) ωk = V (ÃH
(k))/T V = [1 + T (ÃH

(k))]/
n∑

j=1

[1 + T (ÃH
(j))], and then, if Q(x) = x

POWA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) = PA−HFN(ÃH

1 , ÃH
2 , . . . , ÃH

n ).

2) If Q(x) = x and Supp(ÃH
(l), Ã

H
(j)) = c, (c ∈ [0, 1], l ̸= j), we will have

ωk = V (ÃH
(k))/T V = [1 + T (ÃH

(k))]/

n∑
j=1

[1 + T (ÃH
(j))] =

1

n
,

then POWA-HFN reduces to PA-HFN, i.e.,

POWA−HFN(ÃH
1 , ÃH

2 , . . . , ÃH
n ) =

n∑
i=1

ÃH
i /n.

3) POWA-HFN operator is called max or min operators if Q(x) = 1 or Q(x) = 0, respectively.
Also, verifying boundary, commutativity and idempotent properties for POWA-HFN can be
done easily.

When the given arguments are weighted, the POWA-HFN operator is extended to the power
hybrid average (PHA) operator.

Definition 16 Let W = (w1, w2, . . . , wn), with 0 ≤ wi ≤ 1 and
n∑

i=1

wi = 1 be the weight

vector of pseudo-HFEs ÃH
i , i = 1, 2, . . . , n (n ≥ 3). Then,

PHA−HFNω,w(Ã
H
1 , ÃH

2 , . . . , ÃH
n ) =

n∑
k=1

ωkÃ
H′

(k),

is called the power hybrid average operator of pseudo-HFEs (PHA-HFN) where, ω = (ω1, ω2, . . . , ωn)
T

satisfying in 0 ≤ ωi ≤ 1 and
n∑

i=1

ωi = 1 is associated vector, ρ in ÃH′

i = ρwiÃ
H
i (i = 1, 2, . . . , n)

called balancing coefficient, and ÃH′

(k) is the kth largest of the weighted pseudo-HFE ÃH′

i (i =

1, 2, . . . , n).

T (ÃH
i ) which is called total support of ÃH

i by all the other pseudo-HFEs, will be obtained
as in the following new algorithm.

4.1. A new algorithm for computing total support T (ÃH
i )

Suppose W = (w1, w2, . . . , wn) be the weight vector of n pseudo-HFEs ÃH
i , i = 1, 2, . . . , n (n ≥

3),
Step 1 By using Eqs. (1) or (2), compute Hamming (Euclidean) distance between of each

pair of ÃH
i and ÃH

j , (i ̸= j), are denoted by dij = dh(Ã
H
i , ÃH

j ) (dij = de(Ã
H
i , ÃH

j )).

Step 2 Compute relative distance rdij =
dij

n∑
j=1,j ̸=i

dij

.
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Step 3 Support for ÃH
i from ÃH

j is denoted by Sij and obtain as Sij = Supp(ÃH
i , ÃH

j ) =
1− rdij .

Step 4 Calculate the average support of ÃH
i (ASi) by all other pseudo-HFEs, using the

weighted power average operator as

ASi = PWA(Si1, . . . , Si,i−1, Si,i+1, . . . , Sin), i = 1, 2, . . . , n.

Step 5 Normalize the average support as: T (ÃH
i ) = ASi

n∑
j=1

ASj

.

In the following example, we will numerically compare the performance of the introduced PA
operators in [23] and in this paper.

Example 2 (Adapted from [23]) Consider four HFEs a1 = {.8, .6}, a2 = {.9, .5}, a3 = {.7, .6}
and a4 = {.7, .5}. Based on the defined hesitant fuzzy power average (HFPA) operator in [23],
we have:

HFPA(a1, a1, a1) = {.8, .748, .6825, .6},
HFPA(a1, a2, a3) = {.8175, .7992, .7692, .7459, .6910, .6599, .6090, .5697},
HFPA(a1, a2, a4) = {.8183, .7846.7711, .7286, .6893, .6316, .6085, .5358}.

As a result, the HFPA operator is neither idempotent nor bounded.
According to the definition of PA − HFN operator, its input arguments must be pseudo-
HFEs. So, in the first step we have to extend the HFEs into pseudo-HFEs. For instance,
consider the following pseudo-HFEs: Ã1

H = ⟨1; {.8, .6}⟩, Ã2
H = ⟨1; {.9, .5}⟩, Ã3

H = ⟨1; {.7, .6}⟩
and Ã4

H = ⟨1; {.7, .5}⟩. Then

PA−HFN(Ã1
H , Ã1

H , Ã1
H) = ⟨1; {.8, .6}⟩ = Ã1

H ,

PA−HFN(Ã1
H , Ã2

H , Ã3
H) = ⟨1; {.5, .6, .7, .8, .9} = B̃1

H ,

PA−HFN(Ã1
H , Ã2

H , Ã4
H) = ⟨1; {.5, .6, .7, .8, .9} = B̃2

H .

Based on Eq. (3), Eq. (4) and Definition 12, we have Ã4
H ≺ Ã3

H ≺ Ã2
H ≺ Ã1

H , Ã3
H ≺ B̃1

H ≺ Ã1
H

and Ã4
H ≺ B̃2

H ≺ Ã1
H . Because, Score(Ã3

H) < Score(B̃1
H) < Score(Ã1

H), and Score(Ã4
H) <

Score(B̃2
H) < Score(Ã1

H). Then, HFN − PA is an idempotent and bounded operator.

5. PAO and solving MADM problems with pseudo-HFEs

Consider finite sets A = {A1, A2, . . . , Am} and C = {c1, c2, . . . , cn} as the sets of alterna-
tives and criteria/attributes, respectively. Ranking of the alternatives can be done via the
self-assessment method or direct-assessment method. Each candidate, in the self-assessment
method, evaluates himself/herself based on pre-designed forms and gives himself/herself points.
The scores obtained from the self-assessment method are analyzed by a group of experts, and
the degree of its conformity with the actual performance of the candidate is expressed with
a value between 0 and 1. Therefore, with each score we will have a finite set of values be-
tween 0 and 1, which is called the pseudo-HFE ⟨aij , {γ1, . . . , γk}⟩, i.e., the crisp score aij of
ith candidate with respect to jth criterion has been questioned by a group of k experts with
a degree of γi ∈ [0, 1]. However, in the direct-assessment method, each of the options is eval-
uated by the decision-maker about each of the criteria, which is expressed by pseudo-HFEs
h̃ij = ⟨aij , {γ1, . . . , γk}⟩, γi ∈ [0, 1] is called hesitation degree of DM about his/her assessment.
In both cases, the scores of the options are arranged in a matrix called the hesitant decision
matrix ˜HFND = [h̃ij ] = [⟨aij , {γ1, . . . , γk}⟩]m×n.
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Let W = (w1, w2, . . . , wn) be the weight vector of criteria. Such a MADM problem can be
solved using PA operators of pseudo-HFE as follows:

Step 1: Pick ith row (i = 1, 2, . . . ,m) of the hesitant decision matrix ˜HFND = [h̃ij ],

and based on the proposed algorithm in Subsection 4.1, compute the total support T (h̃ij)
(j = 1, 2, . . . , n).

Step 2: Aggregate each row of hesitant decision matrix ˜HFND using PWA −HFN op-
erator as in Eq. (5), and the obtained values in Step 1.

Step 3: Compute and rank the score function and variance of the obtained pseudo-HFEs
in Step 2.

Step 4: Reorder the options Ai, i = 1, 2, . . . , n, according to the ranking order of their
pseudo-HFEs points in Step 3.

6. Numerical example

Example 3 Consider a student who is participated in courses Math, Art, and Physics, which are
weighted by 0.4, 0.3 and 0.3, respectively. Suppose that the professors of each course are allowed
to have a final exam and an arbitrary number of qualitative evaluations of the student’s scientific
activities during the semester. Let, ⟨87; {0.9, 0.7, 0.9, 0.9, 0.9}⟩, ⟨95; {0.8, 0.9, 0.95, 0.9, 0.9}⟩, and
⟨90; {0.7, 0.75, 0.8, 0.85, 0.9}⟩ be the student’s assessment values in courses, in which the real part
of each given pseudo-HFE is the student’ gained point in the corresponding final exam. Then,
using the PWA-HFN the student’s average can be obtained as ⟨90.25; {0.7, 0.7, 0.75, 0.8, 0.8, 0.85,
0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.95}⟩, with score 76.893.
The point is that in calculating the grade point average, in addition to the obtained grades,
attention is paid to the dispersion and, in fact, the student’s scientific fluctuations through the
support function. This careful consideration prevents the large effect of temporary activities
on the final output, in addition to maximizing effort on the night of the exam, students are
encouraged to improve their quality of knowledge during the course.

6.1. Sensitivity analysis

Now, let’s discuss some special cases and their effects in final results.
Case 1. A student with minimal classroom activity but very successful in final exams
Let the scores are given as ⟨97; {0.2, 0.2, 0.3, 0.3, 0.35}⟩, ⟨99; {0.1, 0.1, 0.15, 0.2, 0.2}⟩, and ⟨98; {0.1,
0.15, 0.2, 0.25, 0.3}⟩. The average point of this student is ⟨97.93; {0.1, 0.15, 0.2, 0.3, 0.25, 0.35}⟩,
that its score is 20.174. This shows that although the student was able to achieve high success
in the short period of exams, but the lack of proper classroom activity negatively affects this
success.
Case 2. A student with normal classroom activity and successful in final exams
Let the scores are given as ⟨78; {0.5, 0.6, 0.65, 0.7, 0.75}⟩, ⟨82; {0.6, 0.65, 0.7, 0.45, 0.8}⟩, and
⟨75; {0.6, 0.65, 0.5, 0.55, 0.7}⟩. In this case, ⟨78.30; {0.5, 0.55, 0.45, 0.6, 0.65, 0.7, 0.75, 0.8}⟩, is the
average point of student that its score is 48.94. Compared to the previous case, it is observed
that the student has a higher final score, and this is logical. Because the student who is involved
in the scientific topics of the class during the semester has a better academic quality than the
student who has prepared for the exam only for a short time.

The use of pseudo-HFEs proved that final decisions, such as student rankings and the like,
are not limited to showcase activities and activities limited to the assessment period. Also,
their aggregation by the power average operator showed that large fluctuations in performance
reduced the final assessment value. Therefore, students/ services providers will have enough
motivation to strive continuously and maintain a high level of performance over time.



Non-linear averaging-based operators of pseudo-hesitant fuzzy elements and an application 189

Example 4 (Evaluate organizations) (Adapted from [7]) Consider a MADM problem in-
cluding organizations Oi (i = 1, 2, . . . , 7), and attributes ai (i = 1, 2, . . . , 6) with the score
ceiling 125, 330, 175, 90, 150, and 130, respectively. In the first step, self-assessment forms are
distributed among the organizations to evaluate themselves. Note, O5 is a virtual organiza-
tion with unrealistic self-assessment points. Due to the large difference between the criteria
scores ceiling, we first calculate the relative obtained score of each option. In the second stage,
some experts (for example five experts) are invited to evaluate organizations, and expressed
their opinions in this regard with values of the range of 0 and 1. Then, the obtained values are
HFEs. In the third stage, these two disjoint assessment values are merged which results pseudo-
hesitant fuzzy elements decision matrix ˜HFND = [⟨hij , {γ1, . . . , γ5}⟩]7×6 with pseudo-HFEs
elements, as follows:

˜HFND =



⟨.992; {0.3, 0.4, 0.5, 0.5, 0.2}⟩ ⟨.973; {0.1, 0.4, 0.7, 0.8, 0.9}⟩ ⟨1.00; {0.2, 0.6, 0.6, 0.4, 0.5}⟩
⟨.984; {0.3, 0.5, 0.8, 0.6, 0.9}⟩ ⟨.982; {0.3, 0.5, 0.6, 0.5, 0.9}⟩ ⟨.914; {0.9, 0.9, 0.9, 0.9, 0.9}⟩
⟨.984; {0.3, 0.5, 0.6, 0.7, 0.9}⟩ ⟨.991; {0.1, 0.5, 0.6, 0.9, 0.9}⟩ ⟨.971; {0.3, 0.5, 0.7, 0.6, 0.9}⟩
⟨.968; {0.9, 0.7, 0.8, 0.9, 0.9}⟩ ⟨.997; {0.1, 0.7, 0.3, 0.8, 0.9}⟩ ⟨.989; {0.2, 0.6, 0.7, 0.4, 0.5}⟩
⟨1.00; {0.1, 0.1, 0.1, 0.1, 0.1}⟩ ⟨.991; {0.1, 0.2, 0.1, 0.2, 0.1}⟩ ⟨.977; {0.2, 0.2, 0.3, 0.1, 0.1}⟩
⟨1.00; {0.8, 0.8, 0.9, 0.8, 0.9}⟩ ⟨.985; {0.9, 0.8, 0.7, 0.8, 0.9}⟩ ⟨.983; {0.2, 0.2, 0.3, 0.4, 0.5}⟩
⟨.976; {0.4, 0.4, 0.5, 0.6, 0.9}⟩ ⟨.985; {0.8, 0.5, 0.6, 0.9, 0.6}⟩ ⟨.983; {0.3, 0.5, 0.6, 0.6, 0.6}⟩

⟨.911; {0.7, 0.7, 0.5, 0.6, 0.9}⟩ ⟨.960; {0.3, 0.2, 0.6, 0.3, 0.3}⟩ ⟨.978; {0.3, 0.4, 0.6, 0.7, 0.7}⟩
⟨.978; {0.7, 0.8, 0.5, 0.5, 0.9}⟩ ⟨.980; {0.3, 0.4, 0.4, 0.6, 0.8}⟩ ⟨.961; {0.8, 0.8, 0.8, 0.9, 0.9}⟩
⟨.944; {0.7, 0.6, 0.5, 0.6, 0.9}⟩ ⟨.987; {0.3, 0.3, 0.5, 0.6, 0.6}⟩ ⟨.977; {0.6, 0.7, 0.8, 0.6, 0.9}⟩
⟨.944; {0.8, 0.7, 0.5, 0.5, 0.6}⟩ ⟨.980; {0.1, 0.5, 0.4, 0.5, 0.9}⟩ ⟨.992; {0.7, 0.3, 0.3, 0.4, 0.5}⟩
⟨1.00; {0.1, 0.2, 0.2, 0.2, 0.2}⟩ ⟨.993; {0.1, 0.2, 0.1, 0.3, 0.3}⟩ ⟨1.00; {0.3, 0.1, 0.2, 0.2, 0.1}⟩
⟨1.00; {0.3, 0.4, 0.5, 0.5, 0.2}⟩ ⟨.967; {0.1, 0.7, 0.6, 0.8, 0.9}⟩ ⟨.992; {0.5, 0.3, 0.7, 0.4, 0.5}⟩
⟨.989; {0.3, 0.5, 0.5, 0.6, 0.9}⟩ ⟨.980; {0.7, 0.7, 0.5, 0.6, 0.8}⟩ ⟨.992; {0.3, 0.5, 0.6, 0.4, 0.4}⟩


.

Let W = (0.125, 0.330, 0.175, 0.09, 0.15, 0.13) be the weight vector of criteria. Ranking of the

Table 1: The total points of alternatives and their ranking orders

Organizations Aggregated pseudo-HFEs Score function Ranking order
O1 ⟨0.971, {.1, .2, .3, .4, .5, .6, .7, .8, .9}⟩ 0.4855 6
O2 ⟨0.967, {.3, .4, .5, .6, .7, .8, .9}⟩ 0.5802 2
O3 ⟨0.978, {.1, .3, .5, .6, .7, .8, .9}⟩ 0.5602 3
O4 ⟨0.981, {.1, .2, .3, .4, .5, .6, .7, .8, .9}⟩ 0.4905 5
O5 ⟨0.993, {.1, .2, .3}⟩ 0.1986 7
O6 ⟨0.987, {.2, .3, .4, .5, .6, .7, .8, .9}⟩ 0.5429 4
O7 ⟨0.984, {.3, .4, .5, .6, .7, .8, .9}⟩ 0.5904 1

organizations can be done by the implementing of steps of the proposed algorithm.
Step 1. By applying Eq. (5) on each row of the decision matrix ˜HFND, we get the second
column of Table 1.
Step 2. By applying Eq. (3) on the obtained pseudo-HFEs in Step 1, their score functions can
be obtained as in the third column of Table 1.
Step 3. By using the ranking order of the score functions from Step 2, O7 is the best organiza-
tion, and we have O7 ≻ O2 ≻ O3 ≻ O6 ≻ O4 ≻ O1 ≻ O5.

6.2. Validity test

In this subsection, the validity of the proposed method is examined through three test criteria,
that Wang and Triantaphyllou [17] have proposed for checking and demonstrating the feasibility
of MCDM methods.
Test criterion 1 If we replace a non-optimized option with a worse one while other conditions
such as the weight vector remain constant, the position of the best option should not be changed.
Test criterion 2 In an effective MCDM method, the transitivity property must be established.
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Test criterion 3 By using an effective MCDM method, we get similar rankings if the given
MCDM problem:
i) be solved without breaking it down into several MCDM sub-problems,
ii) be decomposed into several MCDM sub-problems, based on its options set, firstly. Then, the
new MCDM problems are solved, and the obtained rankings are merged into a total ranking.
Consider the organization O3 is replaced with a non-optimized option O which is evaluated as

O =
{
⟨122; {0.4, 0.7, 0.2, 0.5, 0.5}⟩, ⟨324; {0.5, 0.2, 0.3, 0.6, 0.3}⟩, ⟨169; {0.3, 0.8, 0.6, 0.6, 0.5}⟩,
⟨87; {0.4, 0.9, 0.1, 0.2, 0.2}⟩, ⟨145; {0.6, 0.6, 0.5, 0.3, 0.3}⟩, ⟨126; {0.4, 0.7, 0.6, 0.7, 0.7}⟩

}
.

These partial assessment values are aggregated using PWA-HFN operator and then we have
PWA − HFN(O) = ⟨0.974; {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} with score function 0.487.
Based on it, we have O7 ≻ O2 ≻ O6 ≻ O4 ≻ O ≻ O1 ≻ O5. It shows the rank of the
best organization is unchanged. Moreover, it is obvious that the transitivity property is satis-
fied, because the ranking order is obtained based on real values which are called score functions.
Now, let we break the problem down into four not necessarily separate sub-problems {O1,O2,O5,
O6,O7}, {O3,O4,O5,O7}, {O1,O2,O3,O4,O5,O7} and {O2,O3,O4,O5,O6}.
These new MADM sub-problems are solved using the PWA-HFN operator method, proposed
in this paper, then we get O7 ≻ O2 ≻ O6 ≻ O1 ≻ O5, O7 ≻ O3 ≻ O4 ≻ O5, O7 ≻ O2 ≻
O3 ≻ O4 ≻ O1 ≻ O5 and O2 ≻ O3 ≻ O6 ≻ O4 ≻ O5, respectively. Overall ranking order of
organizations will be achieved through the combining these orders as O7 ≻ O2 ≻ O3 ≻ O6 ≻
O4 ≻ O1 ≻ O5 which, is the same as the original ranking order.
Hence, the proposed method is valid under test criteria 1, 2 and 3.

6.3. Comparative analysis

Let us forget for a moments the concept of pseudo-HFEs, and solve Example 4 through two
evaluation methods, i.e., using real parts and membership parts of elements in decision matri-
ces ˜HFND, separately. With the self-evaluation (real part of pseudo-HFEs), the direct sum
gives O5 ≻ O6 ≻ O7 = O4 ≻ O3 ≻ O1 ≻ O2. The simple additive weighting (SAW) operator
ordered them as O5 ≻ O4 ≻ O6 ≻ O7 ≻ O3 ≻ O1 ≻ O2. Also, by TOPSIS method we will get
O5 ≻ O3 ≻ O4 ≻ O6 ≻ O7 ≻ O1 ≻ O2. It can be seen that, in all these three methods, the best
option is the virtual option O5, with unrealistic evaluation values. With the DMs’ evaluation
(membership part of the given pseudo-HFEs in decision matrices ˜HFND), by applying the
TOPSIS-CI method [3], we have: O2 ≻ O6 ≻ O3 ≻ O7 ≻ O4 ≻ O1 ≻ O5.

The completely opposite results of the above two individual cases show that relying on
each lead to incorrect ranking. The combination of self-evaluation and DMs’ evaluation, as
a logical way, leads to the hesitant decision matrix ˜HFND. This combination enables us to
have more fair evaluations. Because on the one hand, unwanted tendencies are managed in the
self-evaluation process, and on the other hand, the effects of non-expert judges are moderated.
However, not paying attention to the dispersion of judges’ opinions, i.e., the hesitant part of
pseudo-HFEs in matrix ˜HFND, as seen in the TOPSIS method, causes the final ranking to
be far from reality: O2 ≻ O3 ≻ O4 ≻ O6 ≻ O7 ≻ O1 ≻ O5. The proposed method of this
article, i.e., the PWA−HFN method, has the advantage of a positive reaction to the distance
and proximity of evaluators’ opinions. The effect of this reaction can be seen in the ranking of
options in Example 4: O7 ≻ O2 ≻ O3 ≻ O6 ≻ O4 ≻ O1 ≻ O5.
The use of the combined matrix caused the virtual option O5 with unrealistic self-evaluation
scores to be placed at the bottom of the rankings in both TOPSIS and PWA−HFN methods.
In this case, the ranking of the PWA−HFN method is even more accurate than the TOPSIS
method. To prove this claim, we compare the scores of the best options of these two methods,
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that is, O2 and O7 options, according to each criterion:
i) From the point of view of the real part of the elements in the decision matrix ˜HFND, option
O7, except for the first criterion, has higher self-evaluation points, with less variance, than
option O2 against other criteria.
ii) By comparing the hesitant part of the scores of these two options in the matrix ˜HFND,
although it seems that the second option has a better performance in most criteria from the
evaluators, but the dispersions of opinions are such that considering the effect of variance, this
advantage is neutralized.
As a result, the ranking obtained from the TOPSIS method has been slightly adjusted in the
PWA−HFN method. This shows that using the method proposed in this paper can produce
better results when pseudo-HFEs are used.

7. Conclusion

To take advantage of pseudo-HFEs, methods for calculating their score function and their
arithmetic operations are presented in this article. Then, some aggregation operators of pseudo-
HFEs based on PAO, i.e. PA − HFN,PWA − HFN,POWA − HFN and PHA − HFN
operators, have been proposed. Finally, a hybrid technique based on combining two evaluation
methods: self-assessment and DMs’ evaluations, has been proposed to solve MAGDM problems
using pseudo-HFEs and PA operators. The advantage of the proposed method is that while
having the strengths of these two methods, it will correct some wrong details, such as unrealistic
scores due to low cognition of DMs or individual motivations of those evaluated.

Due to the novelty of the subject of pseudo-hesitant fuzzy elements [7], many methods for
solving decision problems and mathematical concepts to use them will have to be updated in the
future. Their application in solving linear programming problems, data envelopment analysis,
inaccurate graphs, quantum decision-making problems [5, 15], etc., are other interesting future
research topics.
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