
Croatian Operational Research Review 317
CRORR 5(2014), 317–327

On local search based heuristics for optimization problems

David Kaljun1 and Janez Žerovnik2,∗

1 Faculty of Mechanical Engineering, University of Ljubljana
Aškerčeva 6, 1000 Ljubljana, Slovenia
E-mail: ⟨david.kaljun@fs.uni-lj.si⟩

2 Faculty of Mechanical Engineering, University of Ljubljana
Aškerčeva 6, 1000 Ljubljana, Slovenia

and
Institute of Mathematics, Physics and Mechanics

Jadranska 19, 1000 Ljubljana, Slovenia
E-mail: ⟨janez.zerovnik@fs.uni-lj.si⟩

Abstract. When comparing various metaheuristics, even asking a fair and formally consis-
tent question is often difficult. Having this in mind, we provide some further evidence that
simple local search heuristics may be at least a very competitive choice. On a dataset from
an industrial application, i.e., construction of an optical system, we compare local search
and genetic algorithms. In our case, the best performance is obtained by a combination of
both heuristics.

Key words: optimization, heuristics, local search

Received: September 23, 2014; accepted: December 11, 2014; available online: December
30, 2014

1. Introduction

Even the most simply stated optimization problems such as the traveling salesman
problem are known to be NP-hard, which roughly speaking means that there is no
practical optimization algorithm provided the famous P̸=NP conjecture is correct.
From a practical point of view, knowing that the problem is computationally in-
tractable implies that we may use heuristic approaches and that we should also aim
to find nearly optimal solutions for which sometimes but not always approximation
bounds can be given. Our experience (and many studies in the literature) show that
best results are obtained when a special heuristics is designed and tuned for each
particular problem. This means that the heuristics should be based on considera-
tions of the particular problem and perhaps also on the properties of the most likely
instances. On the other hand, it is useful to work within a framework of some (one
or more) metaheuristcs [24] which can be seen as general strategies to attack an
optimization problem.

Perhaps the most natural and conceptually simple metaheuristics is local search.
In the search space of feasible solutions the solutions with extremal values of the

∗Corresponding author.

http://www.hdoi.hr/crorr-journal c⃝2014 Croatian Operational Research Society



318 David Kaljun and Janez Žerovnik

goal functions are to be found. In order to speak about local search, a topology is
introduced, usually via a definition of a neighborhood structure. It defines which
feasible solutions can be obtained in one step from a given feasible solution. It is
essential that the operation is computationally cheap and that the new value of the
goal function is provided. There are two basic variants of local search, iterative im-
provement and best neighbor (or steepest descent). As the names indicate, starting
from the initial feasible solution, iterative improvement generates a random neigh-
bor, and moves to the new solution based on the difference in the goal function.
The procedure stops when there is no improvement for a sufficiently long time. On
the other hand, best neighbor heuristics (also called steepest descent) considers all
neighbors and moves to the new solution with best value of the goal function. If
there is no better neighbour, the current solution is clearly a local optimum. Note
that given a particular optimization problem, different neighborhood structures can
be defined giving rise to different local search heuristics. In fact, many metaheuris-
tics can be seen as variations or improvement of local search [1], popular examples
include simulated annealing, tabu search [9], iterated local search, variable neigh-
borhood search [18], and GRASP (Greedy Randomized Adaptive Search Procedure)
[6]. The other type of search strategy has a learning component added to the search,
aiming to improve the obvious drawback of local search, a complete lack of memory.
An exception is the tabu search that successfully introduces a short time mem-
ory. Metaheuristics motivated by the idea of learning from past searches include
ant colony optimization [5], evolutionary computation [22], and genetic algorithms
[17]. It is, however, a good question in each particular case whether learning does
indeed mean an improvement [25]; namely, a successful heuristic search must have
both enough intensification and diversification. The second important issue that
may have an essential impact on the success of the multistart local search based
optimization is the selection of the initial solution. Sometimes, for example in a real
world application, we have a known practical solution that we want to improve. On
the other hand, quite often it is possible to generate many initial solutions easily. In
such cases, a construction that is both greedy and to some extent random, may be
the winning idea. Note that the quality of the initial solution is often not essential.
Usually, more important is to have a pool of reasonably good starting solutions that
are at the same time randomly generated thus assisting the multistart algorithm
diversification.

In this paper, it is shown by an experimental example that local search, the most
basic metaheuristics, is a very competitive choice. In particular, several local search
based heuristics are compared with a standard genetic algorithm. We also design
a hybrid genetic algorithm where the survived population is improved by a local
optimization.

The rest of the paper is organized as follows. In the next section, we introduce
the practical problem that we consider. In Section 3, we give some details of the
algorithms we compare. In Section 4, the results of computational experiments are
outlined and in Section 5 concluding remarks are given.



On local search based heuristics for optimization problems 319

2. The problem

The problem at hand is motivated by a research project in which we are trying to
provide a method for goal driven optimization of the luminaire photometry. The
main task is to define the combination and position of secondary optical elements
on a LED array in a way that satisfies user demands on the arrays end photometry.
One of the prerequisites for an efficient optimization method is that the elements
used in the optimization process are described efficiently. In our case, it means
that the input data should be described in a form which utilizes a small number of
parameters. The standard photometric data is composed of measured candela values
in all spatial directions (photometric distribution). The data is then presented as
a set of vectors written in spherical coordinates in the following form [horizontal
angle, polar angle, candela value]. The CIE standard requires the measured data for
general purpose use to have at least 3,312 (72 horizontal angles and 46 reading on
each polar angle) measured points for a full asymmetric distribution [26]. A more
compact form of the data that may be manipulated easier and faster is sought. For
this purpose, we utilize a mathematical model [19] that was capable to accurately
describe the spatial photometric distribution of a LED element without secondary
optics, with the sum of three cosine functions. We adopted the model and made
slight technical changes to ease its use in our heuristics. We added the Imax value to
the model to fix the function parameters in the same interval. Consequently, there
will be three types of parameters, a⋆ ∈ [0, 1], b⋆ ∈ [−90, 90], and c⋆ ∈ [0, 100]. Note
that the parameters in the model are continuous, so a feasible value can be any real
number from the corresponding interval. However, in the optimization process we
will use a discretization of the interval. The adopted model is given by

I (Θ;a,b, c) = Imax

K∑
k=1

ak ∗ cos(Θ − bk)
ck , (1)

where a ∈ [0, 1]K , b ∈ [−90, 90]K , and c ∈ [0, 100]K . Based on given data
(Θi, Im(Θi)), I = 1, 2, . . . N , (N >> 3K) optimal parameters minimizing the func-

tion F (a,b, c) =
√

1
N

∑N
i=1 [Im(Θi)− I(Θi,a,b, c)]

2
should be determined. In or-

der to simplify the problem, it is sufficient to consider the standard least squares
problem G (a,b, c) =

∑N
i=1 [Im(Θi)− I(Θi,a,b, c)]

2
. The problem is one of the

so-called ”separable nonlinear least squares problems” studied already in the 1970s
[10, 15].

There are two differences as opposed to the article [19]. First is that we describe
the spatial distribution of a LED and secondary optical element combo, which means
that we use the model for a slightly different phenomenon. The second difference is
the introduction of global Imax, thus changing the ranges of parameters. This only
simplifies implementation while it is clear that the two models are equivalent.

From the preliminary experiment we deducted that a minimum sum of three
cosine functions (K = 3) will be appropriate to describe the distribution accurately.
This is in accordance with observations of Moreno and Sun, but it should be noted
that this is only valid for the examples which are relatively simple, c.f. rotation
symmetric. The method of fitting the function parameters to the given data will be



320 David Kaljun and Janez Žerovnik

done via minimizing the standard RMS error

RMS(a,b, c) =

√√√√ 1

N

N∑
i=1

[Im(Θi)− I(Θi,a,b, c)]
2
. (2)

The sum runs over all N measured (or, desired) values Im(Θi). Recall that this

is equivalent to minimizing the sum of squares
∑N

i=1 [Im(Θi)− I(Θi,a,b, c)]
2
, i.e.,

finding parameter values a∗, b∗, and c∗ for which the sum is minimal. In other
words, we are looking for an unknown function I(Θ) = I(Θ,a∗,b∗, c∗) defined on
interval [0, 90] such that it fits the given values in points Θi = i ∗ 90/(N − 1),
i = 0, 1, 2, . . . , N − 1 as good as possible, i.e., it minimizes the sum of squares of
errors in the observed points. (In our dataset, N = 46.)

In practical application, the RMS value for a sufficiently accurate fit must be
less than 5%. This is because the current standards and technology allow up to 2%
noise in the measured data. Therefore, the target results of the fitting algorithms
are at less than 5% RMS error, but at the same time there is no practical need for
less than 1% or 2% RMS error.

To sum up, given the standard photometric dataset (3,312 triples), our problem
is to find a vector of parameters t = (a1, a2, a3, b1, b2, b3, c1, c2, c3) with the minimal
RMS value. The space of feasible solutions is thus a Cartesian product of 9 intervals.
Below we will work with a finite subset of parameter values, in particular a⋆ ∈
[0, 0.001, 0.002, . . . , 1], b⋆ ∈ [−90,−89.9,−89.8, . . . , 90], and c⋆ ∈ [0, 1, 2, . . . , 100].
Hence, the discrete search space here consists of Nt = 10003 ∗ 18003 ∗ 1003 ∼ 5, 83 ∗
1024 tuples t = (a1, a2, a3, b1, b2, b3, c1, c2, c3).

3. Local search and genetic algorithms

First, we discuss the specific local search type heuristics. As the original problem is a
continuous optimization problem, compared to discrete optimization, there are even
more possibilities to define a neighborhood for the local search based heuristics. In
fact, the neighborhoods we use can be seen as variable neighborhoods, though they
are all similar. Of course, there may be other neighborhoods that would be worth
considering. The reason we keep the selected neighborhoods and do not try to look
for other possibilities is simply the fact that they have already given us results of
sufficient quality.

In the experiment and in the study, we address the optimization problem as a
discrete optimization problem. Natural questions that may be asked here are why we
use heuristics and why discrete optimization heuristics on a continuous optimization
problem. First, the application of an approximation method is justified because there
is no analytical solution to the best approximation of this type of functions. More
precisely, we are not aware of any analytical solution, and since the functions used
in the model are relatively complicated, we are not surprised that we could not find
any analytical solution of the problem in the literature. Second, in order to apply
continuous optimization methods such as the Newton method, we would usually
need a good approximation in order to assure convergence. More precisely, the



On local search based heuristics for optimization problems 321

convergence theorems usually assume certain conditions the initial condition must
satisfy. Therefore, a method for finding a good starting solution before running a
fine approximation based on continuous optimization methods is needed. However,
in view of the at least 2% noise in the data, these starting solutions in our case may
in many cases already be of sufficient quality! Nevertheless, a fine approximation
based on continuous optimization methods could be used as postprocessing. It may
be of interest to compare the two approaches and their combination in future work,
although it is not of practical interest for the engineering problem regarded here.
We plan to do it in future because it may be a useful method in applications where
more demanding approximation rates are needed.

We have started our experiments with two basic local search algorithms, steepest
descent (SD) and iterative improvement (IF), whereby in both cases the neighbor-
hoods were defined in the same way. We call this neighborhood a fixed step size
neighborhood. The third local search algorithm (IR) is a variation of iterative im-
provement, where we introduce a random step size; roughly speaking, given a step
size and direction as before, we randomly make a step in the direction that is at
most as long as in the fixed size neighborhood search. More precisely, the local
optimization algorithms are defined as follows.

The steepest descent (SD) algorithm begins with the initialization of the
initial function parameter values that are a1 = a2 = a3 = 0.5, b1 = b2 = b3 = 0,
and c1 = c2 = c3 = 1. Next, it initializes the search step values which are for
da = 0.01, for db = 1 and for dc = Imax

10 giving 512 neighbors of the initial solution:
(a1 ± da, b1 ± db, c1 ± dc, a2 ± da, b2 ± db, c2 ± dc, a3 ± da, b3 ± db, c3 ± dc). If there
is a neighbor with a better RMS value, the search moves to the neighbor with the
minimal RMS value (if there are more minimal neighbors, any of them is chosen
with the same probability). If none of 512 is better than the current solution, a new
set of neighboring solutions are generated, this time with a double step. It repeats
for ten steps and if there is still no better solution, it breaks the search, multiplies
the step value by 0.9, so the step is finer, and begins the search from the start in
the neighborhood of the current solution. The algorithm stops when the number of
generated solutions reaches Tmax.

The iterative improvement with fixed neighborhood (IF) algorithm ini-
tializes the same neighborhood as SD. Instead of considering all 512 neighbors at
once, the algorithm generates a neighbor randomly, and moves to the neighbor if its
RMS value is better than the current RMS value. If no better neighbor is found after
1,000 trials, it is assumed that no better neighbor exists. As above, the algorithm
changes to a new neighborhood, this time with a double step. It goes for ten steps
and if there is still no better solution, it breaks the search, multiplies the step value
by 0.9, so the step is finer and begins the search from the start in the neighborhood
of the current solution. The algorithm stops when the number of generated solutions
reaches Tmax.

The iterative improvement with a variable neighborhood (IR) algorithm
begins as the previous two algorithms. It initializes the same initial function param-
eter values. Next, it initializes the search step value within a range, rather than a
static fixed value. The ranges are for da1 = da2 = da3 = {−0.1,−0.099,−0.098, . . . ,
0.1}, for db1 = db2 = db3 = {−9,−8.9,−8.8, . . . , 9} and dc1 = dc2 = dc3= {−10,−9,



322 David Kaljun and Janez Žerovnik

− 8, . . . , 10} It begins generating solutions, using the step range around the initial
solution and calculating their RMS error. As soon as it generates a better solution, it
stops, shifts the focus on that solution, resets the step range to the initial value, and
continues the search in the neighborhood of the new best solution. If after 400,000
generated solutions no better solution is found, the step range gets doubled, and the
search continues.The stopping condition is the same as before.

Naturally, whenever local search is used, the multi start version is worth consid-
ering. As preliminary testing of the multi start version was not competitive with
single longer runs, we decided to use a more advanced heuristics that would, on the
one hand, take advantage of the seemingly successful local search and possibly accu-
mulate information obtained by independent local searches. Our choice was to use a
standard genetic algorithm (SGA) that in fact mimics the evolutionary behav-
ior [11, 17, 22]. Three genetic operators are used, i.e., the selection [11], where the
more fitter in a population get to be chosen as parents more likely than the less fitter,
crossover [11, 17, 22] or breading, where a new solution is created by randomly com-
bining and crossing parameters from two randomly chosen solutions (parents) (cross-
ing is done via a cross point so that every parent pair produces a pair of children) and
the last operator in every generation is self-adapting mutation [22] operator which
operates in the following manner: in the randomly chosen individual, a random
number of parameters is chosen to be changed (mutated), which is done by adding
a randomly chosen value for da1 = da2 = da3 = {−0.01,−0.009,−0.008, . . . , 0.01},
for db1 = db2 = db3 = {−0.25,−0.24,−0.23, . . . , 0.25} and dc1 = dc2 = dc3 =
{−2.5,−2.4,−2.3, . . . , 2.5} to the current parameter value. The standard genetic
algorithm begins with the generation and calculation of the initial population (the
zero population). Then it sorts the population entities from the fittest to the least
fit. After the sorting process, with the crossover operator the algorithm generates
the next generation, which is then submitted to mutation with the adaptive mu-
tation operator. For a second run of evolutionary algorithms we decided to alter
the standard genetic algorithm in a way that we infused a local optimization in
every generation. We called the modified algorithm a Hybrid genetic algorithm
(HGA). As implied above, the hybrid genetic algorithm works in the same way
as the standard one but with an extra operator before the crossover operator. It
starts with generating the initial solution and sorts the entities in the current so-
lution from the fittest to the least fit. Then instead of directly cross breading the
new generation, it first runs the iterative improvement with the fixed neighborhood
algorithm on 10 best entities of the current generation which in turn get locally
optimized (enhanced). After that, there follows the same path that the standard
genetic algorithm does. As for other algorithms the stopping condition is based on
the number of generated solutions.

The parameters used in the experimental study presented below were as follows.
SGA: population size 20,000, number of generations 199. HGA: population 20,000,
33 generations, ten best individuals in each generation were improved by a 10,000
iterations long local search. These parameter values were chosen based on gen-
eral recommendations for genetic algorithms, and were not tuned for this particuar
application.



On local search based heuristics for optimization problems 323

4. Experimental results

Before we dive into the result, we have to note that genetic algorithms have changed
in contrast to the work presented on the workshop BIOMA 2014 [14], where we have
implemented non-standard operators for genetic algorithms, which in turn made it
harder to compare our algorithm to the existing ones. A complete batch of experi-
ments was repeated which also contributed to slightly different results as presented
in [14], because the new experiment was run on different computers with different
architecture. Besides [14], we are not aware of any other experimental or compu-
tational study of the problem; in particular, [19] only proposes the model and does
not address the question how the fitting can be obtained efficiently.

To avoid trivialities, we also compare results obtained by a simple generation of
random solutions (RAN).

Below we discuss the results of a comparative experiment in which all the algo-
rithms were run with Tmax = 4 million. Here Tmax stands for the number of basic
steps (atomic operations, i.e., the number of feasible solutions generated. For the
purpose of algorithm evaluation, we have chosen a set of real available lenses to be
approximated. The set was chosen from the online catalogue of one of the biggest
and most present manufacturer in the world Ledil Oy Finland [9]. Choosing from
the broad spectrum of lenses in the catalogue was based on the decision that the
used LED is Cree XP-E [4], and the demand that the lenses have a symmetric spatial
light distribution. We have preserved the lens product codes from the catalogue, so
the reader can find the lens by searching the catalogue for the code from the first
column in Table 1.

Lens/Alg. SD IF RAN IR HGA SGA
C13353 9.757 4.942 9.243 5.389 5.076 8.531
CA11265 2.775 2.372 4.936 4.798 2.729 4.259
CA11268 2.227 2.229 4.100 2.471 2.578 2.742
CA11483 3.100 3.066 4.130 3.387 3.141 3.867
CA11525 3.150 1.108 3.217 1.907 1.087 2.175
CA11934 3.940 2.514 4.196 3.543 2.909 3.346
CA12392 1,636 1,641 3,424 2,445 2,277 2,395
CA13013 1.202 0.695 2.136 2.241 0.916 0.932
CP12632 5.537 5.493 4.918 4.974 4.362 4.481
CP12633 2.431 2.415 4.063 3.708 2.347 2.496
CP12636 2.348 2.107 4.571 4.217 2.479 4.299
FP13030 2.267 2.257 3.762 3.659 2.414 2.749

Table 1: RMS error after 4 million calculating operations, best of 10 runs.

Table 1 gives the overall best solutions after the long runs of all algorithms on
all twelve instances from the dataset. Recall that the results are acceptable if they
have RMS values lower than 5% and that the approximation better than 1% does not
bring any additional value because of the noise in data. The best two results for each
instance are given in bold. First, observe that all algorithms in most of the cases give
acceptable results, i.e., lower than 5 which is the same as 5% recalling the meaning
of the normalizing parameter Imax. If we take a closer look at the values, we can see
that the iterative improvement with fixed size IF is the winner when counting the
number of best solutions, achieving the best solution in six out of twelve instances.



324 David Kaljun and Janez Žerovnik

The second best is the hybrid genetic algorithm with four best solutions, followed by
the steepest descent with two. Second, comparing the three local search algorithms
and the genetic algorithm in terms of the quality of their best solutions on particular
instances, we see that all best solutions are within 1%. We can conclude that all
four are fairly comparable in terms of the expected quality of the solution. On the
other hand, the blind random search on average does not produce as good results
as the other four; however, it may luckily guess good solutions, in one case even the
best solution was obtained (instance CP12632).

Lens/Alg. SD IF RAN IR HGA SGA
C13353 9.757 9.167 10.950 5.389 8.477 8.966
CA11265 3.477 2.700 7.282 5.073 4.183 5.883
CA11268 2.376 2.620 5.893 2.471 2.932 2.996
CA11483 4.181 3.400 4.130 3.784 3.641 4.027
CA11525 3.813 3.395 4.811 3.789 1.601 2.175
CA11934 4.032 1.662 4.988 3.543 3.789 4.473
CA12392 1.814 1.661 3.597 2.717 2.577 3.867
CA13013 2.804 3.115 2.136 2.241 1.331 3.558
CP12632 9.501 9.839 8.474 5.054 4.703 5.474
CP12633 2.465 4.511 4.757 4.296 2.613 3.918
CP12636 5.000 6.297 5.506 4.217 3.803 4.590
FP13030 2.800 5.679 6.611 3.659 3.233 5.363

Table 2: RMS error after 750 thousand calculating operations, best of 10 runs.

As we have so many results of acceptable quality, a natural question is whether
the time limit chosen above could be shortened. The long runs in our implementa-
tions took 30 minutes for every run on an Intel Core I3-4130 @ 3.5 Ghz, programmed
in C++ (the code was not optimized). Therefore it is interesting to compare shorter
runs, see Table 2.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0
,0

3
,3

6
,6

9
,8

1
3
,1

1
6
,4

1
9
,6

2
2
,9

2
6
,2

2
9
,4

3
2
,7

3
6
,0

3
9
,3

4
2
,5

4
5
,8

4
9
,1

5
2
,3

5
5
,6

5
8
,9

6
2
,1

6
5
,4

6
8
,7

7
2
,0

7
5
,2

7
8
,5

8
1
,8

8
5
,0

8
8
,3

9
1
,6

9
4
,8

9
8
,1

1
0
1
,4

1
0
4
,7

1
0
7
,9

1
1
1
,2

1
1
4
,5

1
1
7
,7

1
2
1
,0

1
2
4
,3

1
2
7
,5

1
3
0
,8

1
3
4
,1

1
3
7
,4

1
4
0
,6

1
4
3
,9

1
4
7
,2

SD IF IR RAN HGA SGA

*104

%

Figure 1: Convergence curve of the fitting algorithms on the C13353.



On local search based heuristics for optimization problems 325

The shorter runs again show that most algorithms achieve the 5% error bound
already in short runs. The hybrid genetic algorithm is the winner in eight out of
twelve cases looking at the best obtained solution. We also observe that in short
runs, the two algorithms based on fixed size neighborhood outperform the random
size neighborhood iterative improvement. As expected, blind random search is not
competitive on average; however curious it might be, but it is the winner on one
instance. Finally, comparing the speed of convergence, we observe that all algorithms
have a very steep convergence curve. A typical example is given in Figure 1.

5. Conclusions

In the previous study [14], it was observed that practicaly good solutions can be
computed both by genetic algorithms and various local search based algorithms.
Here we focus on an experimental comparison of local search and a standard genetic
algorithm. The results can be seen as a further evidence that when considering
metaheuristics, a simple local search heuristics may be at least a very competitive
choice. In particular, the standard genetic algorithm in this case was clearly outper-
formed by a version of local search, and was comparable to the two other variants of
local search. An interesting observation is that the best performance on short runs
is obtained by a combination of both heuristics. In other words, a genetic algorithm
was substantially better when each population was improved using local search runs.

There are many avenues of future research that are worth considering. The
experimental results presented here were obtained applying the standard heuristics
with ad hoc parameters. More careful tuning of parameters of all competitors may
change the results dramatically. We plan to investigate combinations of parameters
for genetic and hybrid algorithms in more detail in future work.

On the other hand, there is no reason to be limited by genetic algorithms and local
search only. In particular, when there may exist more than one optimal solution, it
may be useful to apply metaheuristics for global optimization such as the branch and
bound [8, 12, 13, 21] or the DIRECT method [7, 20], as one of reviewers suggested.

Acknowledgment

This work was supported in part by ARRS, the Research Agency of Slovenia, grant
P1-0285. The authors wish to thank two anonymous reviewers for their careful
reading of the manuscript and constructive remarks.

References

[1] E. H. L. Aarts and J. K. Lenstra (1997). Local Search Algorithms. Chichester: John
Wiley & Sons.

[2] I. Ashdown (2001). Thinking photometrically part ii. In LIGHTFAIR 2001 Pre-
Conference Workshop.

[3] Cree Inc. 4600 silicon drive, Durham, North Carolina 27703, USA, Technical report.
http://www.cree.com/led-components-and-modules/products/xlamp/discrete-

directional/xlamp-xpe [Accessed on 14 August 2014]



326 David Kaljun and Janez Žerovnik

[4] S. Kennedy (2005). Escaping the bulb culture: The future of leds in architectual
illumination. LEDs magazine, 1, 13–15

[5] M. Dorigo and T. Stutzle (2004). Ant Colony Optimization. Cambridge (Mas-
sachusetts): MIT Press.

[6] T.A. Feo and M.G.C. Resende (1995). Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6, 109–133.

[7] D. E. Finkel and C. T. Kelley (2006). Additive scaling and the DIRECT algorithm.
Journal of Global Optimization, 36, 597–608.

[8] C.A. Floudas and C.E. Gounaris (2009). A review of recent advances in global opti-
mization. Journal of Global Optimization, 45, 3–38.

[9] F. Glover and M. Laguna (1997). Tabu Search. Dordrecht: Kluwer Academic Publish-
ers.

[10] G.H. Golub, and V. Pereyra (1973). The differentiation of pseudo-inverses and non-
linear least squares problems whose variables separate. SIAM Journal of Numerical
analysis, 10, 413–432.

[11] R. L. Haupt and S. E. Haupt (2004). Practical Genetic Algorithms. Chichester: John
Wiley & Sons.

[12] E. M.T. Hendrix, B.G. Toth (2010). Introduction to Nonlinear and Global Optimiza-
tion. Berlin: Springer.

[13] D. R. Jones, C. D. Perttunen, and B. E. Stuckman (1993). Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and Applications, 79,
157–181.

[14] D. Kaljun and J. Žerovnik (2014). Local search optimization of a spatial light distri-
bution model, in bioinspired optimization methods and their application, J. Šilc and
A. Zamuda (eds.), Ljubljana: Jožef Stefan Institute, 81–92.

[15] L. Kaufman, and V. Pereyra (1978). A method for separable nonlinear least squares
problems with separable nonlinear equality contraints. SIAM Journal of Numerical
analysis, 15, 12–20.

[16] Ledil Oy. Salorankatu 10, fi-24240 salo, Finland, Technical report.
http://www.ledil.com/ [Accessed on 14 August 2014]

[17] M. Mitchell (1999). An Introduction to Genetic Algorithms. Cambridge (Mas-
sachusetts): MIT Press.

[18] N. Mladenović and P. Hansen (1997). Variable neighborhood search. Computers &
OR, 24, 1097–1100.

[19] I. Moreno and C.-C. Sun (2008). Modeling the radiation pattern of leds. Optics Ex-
press, 16, 1808–1819.

[20] R. Paulavicius and J. Žilinskas (2014). Simplicial Global Optimization. Berlin:
Springer-Verlag.

[21] J.D. Pinter (1996). Global Optimization in Action (Continuous and Lipschitz Opti-
mization: Algorithms, Implementations and Applications). Dordrecht: Kluwer Aca-
demic Publishers.

[22] D. Simon (2013). Evolutionary Optimization Algorithms. Chichester: John Wiley &
Sons.

[23] C.-C. Sun, T.-X. Lee, S.-H. Ma, Y.-L. Lee, and S.-M. Huang (2006). Precise optical
modeling for led lighting verified by cross correlation in the midfield region. Optics
Letters, 31, 2193–2195.

[24] E.-G. Talbi (2009). Metaheuristics: From Design to Implementation, Chichester: John
Wiley & Sons.

[25] A. Vesel and J. Žerovnik (2000). How well can ants colour graphs? CIT. Journal of
Computing and Information Technology, 8, 131–136.



On local search based heuristics for optimization problems 327

[26] The Subcommittee on Photometry of the IESNA Computer Committee (2002). Iesna
standard file format for the electronic transfer of photometric data and related infor-
mation. Technical Report ANSIDESNA LM-63-02, Illuminating Engineering Society
of North America.


