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Abstract. For a fixed natural number k, a problem of k collaborating salesmen servicing
the same set of cities (nodes of a given graph) is studied. We call this problem Minimum-
weight k-Size Cycle Cover Problem (or Min-k-SCCP) due to the fact that the problem has
the following mathematical statement. Let a complete weighted digraph (with loops) be
given, it is required to find a minimum-weight cover of the graph by k vertex-disjoint cycles.
The problem is a simple generalization of the well-known Traveling Salesman Problem
(TSP).
We show that Min-k-SCCP is strongly NP-hard in the general case. Metric and Euclidean
special cases of the problem are intractable as well. Also we prove that Metric Min-k-
SCCP belongs to APX class and has a 2-approximation polynomial-time algorithm. For
Euclidean Min-2-SCCP in the plane, we present a polynomial-time approximation scheme
extending the famous result obtained by S. Arora for Euclidean TSP. Actually, for any
fixed c > 1, the scheme finds a (1 + 1/c)-approximate solution of Euclidean Min-2-SCCP
in O(n3(logn)O(c)) time.

Key words: vertex-disjoint cycle cover, Traveling Salesman Problem (TSP), NP -hard
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1. Introduction

We consider the following combinatorial optimization problem, which is closely re-
lated to the well-known Traveling Salesman (TSP) and Vehicle Routing (VRP) Prob-
lems. For a fixed natural number k and a given complete weighted digraph (with
loops) G = (V,E,w), it is required to find a minimum-weight cover of the set V by
k vertex-disjoint cycles.

Let C be an arbitrary directed cycle in the digraph G. We will denote sets of its
nodes and arcs by V (C) and E(C) respectively.

Arcs of G are weighted by some weighting (cost) function w : E → R. Since the
set E is finite, the weight function w is defined by the matrix

W = (wij), (1 6 i, j 6 n)
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uniquely, so that the weight w(e) of any arc e = (i, j) is determined by the for-
mula w(e) = wi,j . The weight (cost) of a cycle C is defined by equation W (C) =∑
e∈E(C) w(e).

Definition 1. Let C1, . . . , Ck be vertex-disjoint simple directed cycles in the graph
G, such that V (C1)∪ . . .∪V (Ck) = V. The family C = {C1, ..., Ck} is called a k-Size
Cycle Cover (k-SCC) of the graph G. The weight W(C) of the cover C is defined by

equality W(C) =
∑k
i=1W (Ci).

Minimum-weight k-Size Cycle Cover Problem (Min-k-SCCP). For a given
complete weighted digraph G = (V,E,w) with loops, it is required to find the
minimum-weight k-size cycle cover (of the graph G).

Min-k-SCCP can be stated in the optimization form

W(C) = min
∑k
i=1

∑
e∈E(Ci)

w(e)

s.t.
k⋃
i=1

V (Ci) = V,

V (Ci) ∩ V (Cj) = ∅, ({i, j} ⊂ {1, . . . , k} = Nk).

We consider two special cases of Min-k-SCCP, which we call Metric and Euclidean
minimum-weight k-size cycle cover problems respectively.

In Metric Min-k-SCCP a weight function w satisfies the following constraints: (i)
wij ≥ 0, (ii) wij = wji, (iii) wii = 0, and (iv) wil + wlj ≥ wij for any 1 ≤ i, j, l ≤ n.
Further, we denote by Ḡ the undirected graph induced by G. We will use Ḡ since the
weight of an arbitrary cycle cover does not depend on orientation of the constituent
cycles.

Euclidean Min-k-SCCP is just a subclass of Metric Min-k-SCCP, in which nodes
of the given graph G are points in d-dimensional space (for some d > 1), and edge
weights are Euclidean distances between the incident nodes.

2. Related work

Min-k-SCCP is a natural generalization of the well-known Traveling Salesman Prob-
lem (TSP) [1] which deals with finding the minimum-cost Hamiltonian cycle (sales-
man tour) in a given complete weighted graph.

It is known [2], that the TSP is NP-hard even in the Euclidean case, i.e. the
optimal solution can not be found in polynomial time, unless P = NP. Although
the TSP is hardly approximable [3] in the general case, for some special cases there
are developed polynomial-time approximation algorithms. For instance, Metric TSP
[4] can be approximated in polynomial time with a ratio of 3/2, and, for Euclidean
TSP, a polynomial-time approximation scheme [5] and a asymptotically correct [6]
algorithm are developed.

Other well-known generalizations of the TSP are Min-L-UCC and m-PSP. In-
stances of these problems are given by undirected complete graphs with non-negative
edge weights. In Min-L-UCC problem edge weights satisfy the triangle inequality.
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It is required to find the cycle cover in which the length of every cycle belong to
the set L ⊆ U = {3, 4, 5, ...}. Here the length of a cycle is the number of its edges.
Min-L-UCC problem is NP-hard and APX-hard for almost all sets L [7]. In the
paper [9] it is shown that Min-L-UCC problem can be approximated within a factor
of 4 for L = {k, k+ 1, ...} and L = {k}. In m-PSP the goal is to find m edge-disjoint
Hamiltonian cycles H1, ...,Hm, so as to minimize or maximize the total weight of
the cycles. For Max-2-PSP, there exists the asymptotically optimal algorithm [6].

We show that Min-k-SCCP problem is strongly NP-hard in the general case and
remains intractable in metric and Euclidean special cases. For Metric Min-k-SCCP
we propose a 2-approximation polynomial-time algorithm. For Euclidean Min-2-
SCCP in the plane we present a polynomial-time approximation scheme, extending
the result of S. Arora [5], obtained for Euclidean TSP.

3. Computational complexity of the Min-k-SCCP

This section contains the intractability results for both the general case of Min-k-
SCCP and the metric and Euclidean special cases of the problem in question.

Theorem 1. Min-k-SCCP, Metric Min-k-SCCP and Euclidean Min-k-SCCP (in
d-dimensional space for some d > 1) are strongly NP-hard for any fixed k > 1.

Theorem 1 is prooved in [8]. The main idea of the proof is very popular in
the computation complexity theory. The TSP is reduced to the Min-k-SCCP by
cloning the TSP instance and spreading the clones apart. Further, it is shown that
any optimal solution of the obtained instance of Min-k-SCCP consists of optimal
solutions (Hamiltonian cycles of the minimum weight) of the initial TSP instance.

Adapting the technique developed in [3] to the case of k-size cycle covers, it is
easy to show that Min-k-SCCP has no polynomial approximation algorithms with
any ratio of O(2n). In subsequent sections we show that Metric Min-k-SCCP and
Euclidean Min-k-SCCP can be approximated with much higher accuracy.

4. 2-approximation algorithm for Metric Min-k-SCCP

We propose the approximation algorithm (Algorithm 1), which extends the scheme of
2-approximation algorithm [4] for Metric TSP based on preliminary construction of
minimum spanning tree (for the given graph). Hereinafter, we use standard notations
APP and OPT for the weight of k-size cycle cover found by approximation algorithm
and optimal k-size cycle cover, respectively. Also, we assume w.o.l.g. that n > k.

We summarize properties of the proposed Algorithm 1 in Assertion 1.

Assertion 1. Algorithm 1 has a running-time of O(n2 log n) and an approximation
ratio APP/OPT satisfying (in the worst case) the following inequality

APP

OPT
≤ 2(1− 1/n). (1)

Proof. In Algorithm 1, the running time of step 1 is upper-bounded by the running
time of Kruskal’s algorithm, which is O(|E| log |E|) [11]. The running time of steps
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Algorithm 1 Polynomial-time 2-approximation algorithm

1: For the given graph G, construct a k-trees minimum spanning forest F apply-
ing the simple modification of Kruscal’s minimum spanning tree construction
algorithm [10];

2: Take all edges in F twice to transform all nonempty trees of F into Eulerian
subgraphs;

3: For any obtained Eulerian subgraph, find a Eulerian cycle; after that transform
all of them into Hamiltonian cycles (using the standard procedure);

4: Output the constructed set of cycles augmented by the necessary number of
one-node routes.

2 and 3 is O(|E|). Hence, the running time of Algorithm 1 is upper-bounded by
O(n2 log n) for a given complete graph G.

To prove inequality (1), we consider an arbitrary minimum-weight k-size cycle
cover C of the graph G. Since k < n, C contains at least one nonempty cycle‡. We
transform C into k-spanning forest F by removing the most heavy edge from any
nonempty cycle. Further, we denote by SF and by MSF the weights of F and
k-minimum spanning forest respectively. Then,

MSF 6 SF 6 OPT (1− 1/n),

consequently,

APP 6 2MSF 6 2(1− 1/n)OPT,

and
APP

OPT
≤ 2(1− 1/n).

It should be noted that approximation ratio bounds (1) of Algorithm 1 are in-
dependent on k. Therefore, Algorithm 1 can be considered as a 2-approximation
algorithm for the case of Min-k-SCCP for which parameter k is a part of an in-
stance.

5. Polynomial-time approximation scheme

It is generally believed that a combinatorial optimization problem has a polynomial-
time approximation scheme (PTAS) if, for any fixed c > 1, there exists an algorithm,
finding a (1 + 1/c)-approximate solution of the problem in time bounded by some
polynomial of the instance length. Generally speaking, the order and coefficients of
this polynomial can be dependent on c.

Further, we present a polynomial-time approximation scheme for Euclidean Min-
2-SCCP in the plane.

‡We call a cycle C empty if C is a loop
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5.1. Preliminary preprocessing of the problem instance

We start from the claim that, for any instance of Euclidean Min-2-SCCP in the
plane, one of the following alternatives is valid; their verification can be conducted
in polynomial time: (i) the instance in question is decomposable into a pair of
independent smaller Euclidean TSP instances; (ii) maximum inter-node distance
(diameter) of the instance has an upper bound, which depends linearly on OPT.

Figure 1: Minimum spanning forest {T1, T2} and circumscribed circles

Our considerations are based on the well-known geometric Jung’s inequality [12,
13], establishing the dependence between the diameter D of a bounded set in d-
dimensional space and the radius R of its circumscribed circle:

1

2
D 6 R 6

(
d

2d+ 2

) 1
2

D.

Consequently, in the plane we have:

1

2
D 6 R 6

√
3

3
D. (2)

For the instance given by the graph Ḡ (Fig. 1), we construct a 2-minimum
spanning forest (2-MSF) F = {T1, T2}. We denote by MSF the weight of the forest
F , by D1 and D2 the diameters of the trees T1 and T2. Also, we denote by R1, R2

and by ρ(T1, T2) radii of circumscribed circles and the distance between their centers
respectively. Let, further, D = max{D1, D2} and R = max{R1, R2}.

Assertion 2. Suppose for the given graph Ḡ the following lower bound

ρ(T1, T2) > 5R (3)

is valid. Then, an arbitrary minimum-weight 2-size cycle cover of the graph consists
of minimum-weight Hamiltonian cycles for subgraphs G(T1) and G(T2) induced by
trees T1 and T2. Otherwise, internode distances of the given instance can be upper-
bounded by

7
√

3

3
MSF 6

7
√

3

3
OPT. (4)
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Proof. Let inequality (3) be valid for the given instance. Suppose C = {C1, C2} is
a minimum-weight 2-size cycle cover of the graph G. We assume, by contradiction,
that some cycle contains nodes from the both trees T1 and T2. W.l.o.g., we suppose
that the following equations

C1 ∩ T1 6= ∅, C1 ∩ T2 6= ∅, C2 ∩ T2 6= ∅, and C2 ∩ T1 = ∅

are valid§.
By assumption, the cycle C1 contains at least two edges e1 and e2, spanning T1

and T2. By condition, the weights w(e1) and w(e2) are greater than 3R, simultane-
ously. Let us remove these edges and close the cycles inside the circumscribed circles
(for T1 and T2). To make such a transformation, we should add three new edges and
remove one. Summarizing, the total weight of the removed edges is greater than 6R
and the total weight of the added edges is at most 6R. Therefore, we construct a
lighter 2-size cycle cover than C that contradicts the optimality of C.

Suppose the given instance violates (3), then the distance between any two nodes
in the graph G is at most 7R. due to the triangle inequality. Applying the right-hand
side of (2) and taking into account the straightforward bound D 6 MSF 6 OPT ,
we have

R 6

√
3

3
D 6

√
3

3
OPT.

Therefore, the maximum internode distance of the graph G is upper-bounded by (4).

As it follows from Assertion 2, for any instance of Euclidean Min-2-SCCP satis-
fying condition (3), PTAS can be composed of PTASs for two smaller instances of
Euclidean TSP defined by subgraphs G(T1) and G(T2).

Hereinafter, we consider the special case of Euclidean Min-2-SCCP, which vio-
lates (3).

5.2. Well-rounded problem

To approximate Euclidean Min-2-SCCP in the plane, it is sufficient to have an
efficient approximation algorithm for the special case of the problem in question,
which is called well-rounded Min-2-SCCP. In particular, PTAS for the well-rounded
Min-2-SCCP induces PTAS for the general case with the same bound on the running-
time.

Definition 2. An instance of Euclidean Min-2-SCCP in the plane is called well-
rounded, if the following conditions are valid: (i) any node i of the input graph Ḡ
has integral coordinates xi, yi ∈ N0

O(n); (ii) for each edge e ∈ E, w(e) > 4.

We use the following Lemma 1, which is proved in [8].

Lemma 1. A PTAS for well-rounded Min-2-SCCP induces PTAS for Euclidean
Min-2-SCCP.

§Other cases can be considered similarly
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Further, we construct a geometric partition of Min-2-SCCP, following the general
approach from [5]. For an instance of Euclidean Min-2-SCCP given by a graph Ḡ,
we call bounding box the smallest axis-aligned square S containing all nodes of Ḡ,
such that side-length L of this square is a some power of two.

We construct a dissection of S into smaller squares using vertical and horizontal
lines. These lines cross the coordinate axes in integer-coordinate points with step 1.
By construction, every smallest-size square contains at most one node of the given
instance (Fig. 2).

Figure 2: Dissection of bounding box, quadtree, and shifted quadtree

Further, we proceed with using of a special kind of 4-regular tree known as a
quadtree [14]. In our case, the root of the tree is the bounding box S. Each non-leaf
square in the tree is partitioned into four equal child sub-squares. This recursive
partitioning stops on a square, containing at most one node.

We define levels of the squares of the constructed quadtree as follows. The
bounding box S is the unique square of the first level, its four children belong to
the second level, and so on. By construction, the quadtree contains O(n) leaves,
O(logL) = O(log n) levels and thus O(n log n) squares in all.

We refer to the point (L/2, L/2) as the centre point. (L/2, L/2) is the point of
crossing of inner edges of first level squares. We consider quadtree whose the centre
point is picked randomly in S.

Definition 3. Let a, b ∈ NL be constants. The quadtree, whose centre point has
coordinates ((L/2+a) mod L, (L/2+ b) mod L), is called shifted and is designated
T (a, b).

The squares of T (a, b) which have level≥ 1 are considered modulo L and are called
wrapped-around (Fig. 2). Our goal is to show that, if the stochastic variables a, b are
distributed uniformly in NL, in the quadtree T (a, b) there is (1+1/c)-approximation
of the Euclidean Min-2-SCCP on the plane with probability at least 1/2.

5.3. Structure theorem

For some parameter values m, r ∈ N and any square S (a node in quadtree T (a, b)),
we assign a regular partition of the border ∂S, consisting of 4(m+1) points including



8 Michael Khachay and Katherine Neznakhina

all the corners of S. We call this partition m-regular, and its points are referred to
portals.

Definition 4. The union of m-regular partitions of borders for all nodes of the
quadtree T (a, b) (except the root) is called the m-regular portal set, and is denoted
by P (a, b,m).

Definition 5. Let C be an arbitrary simple cycle in the graph Ḡ in the plane. The
closed continuous piecewise linear route l(C) such as (i) l(C) bends only the points
of V (C)∪P (a, b,m); (ii) nodes of V (C) are visited by l(C) in the same order as by
C; (iii) for any side of any node of T (a, b), the route l(C) crosses this side in the
points of P (a, b,m) and no more than r times is called (m, r)-approximation of the
cycle C.

Following the Arora’s idea of approximate Hamiltonian tour, we define the similar
construction for our problem.

Definition 6. Let C = {C1, . . . , Ck} be an arbitrary k-size cycle cover in the graph
Ḡ, and let l(Ci) be some (m, r)-approximation of the cycle Ci. Then the family
L(C) = {l(C1), . . . , l(Ck)} is called cycle (m, r, k)-cover in the graph Ḡ.

Obviously, an arbitrary cycle (m, r, 1)-cover consists of the only Hamiltonian
cycle. We are interested in (m, r, 2)-covers (Fig. 3).

Figure 3: Example of cycle (m, r, 2)-cover

Theorem 2. Let the constant c > 1 be fixed, L be the size of the bounding box
S for the given instance of well-rounded Min-2-SCCP in the plane, and let discrete
stochastic variables a and b be distributed uniformly in NL. Then, for m = O(c logL)
and r = O(c) with probability at least 1/2 there exists cycle (m, r, 2)-cover in the
graph Ḡ whose weight is not exceeding (1 + 1/c)OPT .

Theorem 2 is proved in [8].

5.4. Dynamic programming

For parameter values m = O(c log n) and r = O(c), we describe the dynamic pro-
gramming procedure for searching for the cycle (m, r, 2)-cover L = {l1, l2} of the
minimum weight with the running time of O(n(log n)O(c)) .
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Definition 7. A part of cycle (m, r, 2)-cover which belongs to some square S (being
a node of the quadtree T (a, b)) and visits all the nodes of the given graph Ḡ which
are located inside the square S, is called (m, r, 2, S)-segment (of this cover).

To describe an adaptation of the well-known Bellman equation (see explanations,
e.g. in [15]) for the problem in question, we define the inner task, which is solved
recursively for each entry of the dynamic programming lookup table.

Inner Task (S,R1, R2, κ).
Input. A square S being some node in quadtree T (a, b). The cortege Ri : Nqi →
(P (a, b,m)∩∂S)2 defines a sequence of the ordered portal pairs (sij , t

i
j); i.e., crossing-

points of (m, r)-approximation li and the border ∂S of the square S. The number
κ defines the number of parts of cycle (m, r, 2)-cover which intersect the square S.
If q1q2 > 0, κ = 2; otherwise, it can take an arbitrary value from {1, 2}.
Output. A (m, r, 2, S)-segment defined by the values of input parameters, having
the minimum weight W (S,R1, R2, κ).

Depending on values of the input parameters there are several cases of this Inner
task:

(i) case of q1q2 > 0 seems to be regular. In this case the resulting segment
consists of parts of the both (m, r)-approximations l1 and l2;

(ii) case of q1 6= 0, q2 = 0 (or q1 = 0, q2 6= 0) and κ = 1 is similar to the
previous one, apart from the fact that all subroutes in the square S belong to the
only (m, r)-approximation (either l1, or l2);

(iii) in the case of q1 6= 0, q2 = 0 (or q1 = 0, q2 6= 0) and κ = 2, one of the
building (m, r)-approximations is supposed to belong entirely to the square S; in
this case the resulting segment is constructed by augmenting the output of the case
b) by closed (m, r)-approximation located inside the square S;

(iv) if q1 = q2 = 0 and κ = 2, l1 and l2 are supposed to belong to the square S,
and the output is cycle (m, r, 2)-cover which is located in the square S;

(v) finally, if q1 = q2 = 0 and κ = 1, it is required to find one (m, r)-approximation
of the minimum weight, which belongs entirely to the square S. This case is the
same as TSP.

Bellman equation. Similarly to PTAS for Euclidean TSP, we start dynamic pro-
gramming procedure from leaves of the quadtree T (a, b). Let S be an arbitrary
leaf in the tree T (a, b). By construction, S contains no more than one node of the
graph Ḡ, and for any input values of R1, R2 and the number κ, the Inner Task
(S,R1, R2, κ) can be solved by brute force in time of O(r).

Any other node (not a leaf) of the quadtree T (a, b) has four child nodes, let us
denote them SI , . . . , SIV . According to the recursive assumption, for any entry of
the lookup table, which is related to the square S, to the moment of filling this entry,
all possible instances of Inner task for squares SI – SIV should be solved (and the
appropriate entries are filled).

Let us explain a recursive solution of the inner task (S,R1, R2, κ) for fixed values
of corteges R1 and R2 and the parameter κ. Let P be a family of multisets P ,
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consisting of no more than 4r portals (with their multiplicities), that are located on
the inner sides of the child squares SI , . . . , SIV .

By the choice of m and r, any such side has m+ 2 portals, in which the side can
be crossed no more than r times. Therefore, |P| = O((m+ 2)4r). For any multiset
P ∈ P we assign the set ΣP of maps σ : P → Nq1+q2 , for each inner portal p ∈ P
each of them assigns the ordered pair

(s1σ(p), t
1
σ(p)), if σ(p) 6 q1,

(s2σ(p)−q1 , t
2
σ(p)−q1), otherwise ,

and, consequently, the route-segment l1(s1σ(p), t1σ(p)) or l2(s2σ(p)−q1 , t
2
σ(p)−q1), cross-

ing one of inner sides (of child squares) in the portal p. In this case we call such
a portal p matched to this route-segment. Since |P | 6 4r and q1 + q2 6 4r, the
following bound |ΣP | = O((2r)4r) is valid.

For any route-segment li(sij , tij), we assign the set Λij(σ) consisting of permu-
tations α of the preimage multiset σ−1(j + (i− 1)q1) ⊂ P for the map σ. It is easy
to show that |Λij(σ)| = O((4r)!).

Each triple τ = (P, σ, α) induces the instance quadruple of the inner tasks(
(SI , RI1(τ), RI2(τ), κI(τ)), . . . , (SIV , RIV1 (τ), RIV2 (τ), κIV (τ))

)
in such a way that

W (S,R1, R2, κ) = min
τ

IV∑
i=I

W (Si, Ri1(τ), Ri2(τ), κi(τ)),

and the solving time-complexity for the task (S,R1, R2, κ) has the upper bound
O((m+ 2)4r(2r)4r(4r)!).

Finally, to find a minimum-weight cycle (m, r, 2)-cover, we should find a solution
for the task (S, R0

1, R
0
2, 2), for empty corteges R0

1 and R0
2.

To estimate the total running time of the constructed dynamic programming
procedure, we need an upper bound for the number of entries in the lookup table.
It can be easily verified, that any node S of the quadtree T (a, b) is related to O(m+
2)4r ways to choose a multiset of portals located on ∂S; any such multiset can be
partitioned into pairs by at most O((4r)!) times, and any such partition can be
assigned to routes l1 and l2 by at most O(22r) ways. Taking into account the total
number O(L logL) of nodes (for the quadtree T (a, b)), we obtain an upper running
time bound for the pair (a, b)

O
(
L logL× (m+ 2)8r((4r)!)2(2r)4r × 22r

)
. (5)

Derandomization. The dynamic programming procedure described above finds
an approximate solution of well-rounded Min-2-SCCP for each pair a, b, which is
related to the quadtree T (a, b). We denote by APP (a, b) the weight of such a
solution. As it follows from Theorem 2

P

(
APP (a, b) 6 (1 +

1

c
)OPT

)
> 1/2,
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for the probability measure induced by the distribution of a and b. Therefore, there
is a pair (a∗, b∗) ∈ NL, for which the following inequality

OPT 6 APP (a∗, b∗) 6 (1 + 1/c)OPT

is valid. Such a pair can be found by exhaustive search in the time O(L2). Taking
into account that m = O(c log n), r = O(c), and L = O(n), we have proved the
following Theorem 3.

Theorem 3. Well-rounded Min-2-SCCP in the plane has a PTAS with a time com-
plexity of

O(n3(log n)O(c)). (6)

Combining the claims of Lemma 1 Theorem 3 we obtain our main result.

Corollary 1. Euclidean Min-2-SCCP in the plane has a PTAS with running time (6).

It should be noted that time complexity of the proposed PTAS for Min-2-SCCP
equals the complexity of PTAS, proposed in [5] for Euclidean TSP, and differs (as
it follows from (5)) from it by the constant factor 2O(c).

Conclusion

For any fixed k > 1, we have proved the intractability of Min-k-SCCP combinatorial
optimization problem and two of its special cases Metric Min-k-SCCP and Euclidean
Min-k-SCCP.

For Metric Min-k-SCCP, a 2-approximation polynomial-time algorithm is pro-
posed. For Euclidean Min-2-SCCP on the plane, a polynomial-time approximation
scheme is developed.

While the obtained results implies that Metric Min-k-SCCP belongs to APX, and
Euclidean Min-2-SCCP belongs to PTAS complexity classes, several issues remain
open. In particular, we are interested in constructing approximation algorithms for
Metric Min-k-SCCP with improved approximation ratios. Also, we hope that the
presented PTAS can be extended to Euclidean Min-k-SCCP for any k > 2 and any
dimension d > 2.
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