
Croatian Operational Research Review 1
CRORR x(201x), 1–10

An Efficient Parallel Implementations of Approximation
Algorithms for Guarding 1.5D Terrains

Abstract. In the 1.5D Terrain Guarding Problem we are given an x-monotone polygonal
line defined by k vertices and a set G of points from the terrain, i.e. guards, and a set
N of points from the terrain which are to be seen (guarded) by guards. We deal with a
weighted version of the guarding problem where guards G have weights and the goal is
to find a minimum weight subset of G to cover all the points in N , and a version where
points from N have demands, and the goal is to find the smallest subset from G such that
every point in N is seen by the demanded number of guards. Both problems are NP-hard
and have a factor 5 approximation ([3], [4]). We show that if (1 + ϵ)-approximate solver
to the corresponding linear program is a computer, for any ϵ > 0, an extra 1 + ϵ factor
will appear in the final approximation factor for both problems. We compare our parallel
implementation based on GPU and CPU threads with Gurobi solver and conclude that
our algorithm outperforms Gurobi solver on large and dense inputs typically by one order
of magnitude.

Key words: 1.5D terrain guarding, linear programming, CUDA, approximation algorithm

Received: xx xx, 201x; accepted: yy yy, 201x; available online: zz zz, 201x

1. Introduction

A terrain T is an x-monotone polygonal chain with set of vertices i.e., a piecewise
linear curve intersecting any vertical line in at most one point. The terrain polygon
PT determined by T is the closed region in the plane bounded from below by T .
For two points p and q in PT , we say that p sees q and write p ∼ q, if the line
segment connecting p and q is contained in PT , (see Figure 1). This kind of guarding
problem and its generalizations to 3-dimensions are motivated by optimal placement
of antennas for communication networks [1]. The 1.5D-terrain guarding problem is
to select a smallest set of guards X from terrain T such that for every p ∈ T there
is a guard in X that sees p.

Previous work For the 1.5D terrain guarding problem it is known to be NP-hard
[10]. The problem can be approximated within 1+ϵ for any ϵ > 0 using a local search
technique [7] but it is not clear how this approach can be extended to the weighted
version and version with demands. In [3] and [4] we presented a first constant factor
approximation algorithms based on LP rounding. Thus far, we are not aware of
any implementations attempts because all the approaches prior to [3] and [4] are
relatively complicated to implement.

http://www.hdoi.hr/crorr-journal c⃝201x Croatian Operational Research Society

2 Efficient implementations of Guarding 1.5D Terrains

p
q

T

p ∼ q

p
q

T

p 6∼ q

Figure 1: Visibility on 1.5D Terrains

Contribution In this paper we present an implementation of terrain guarding
algorithms from our results [3] and [4] and show how approximately solving corre-
sponding LP of terrain guarding problem can induce an error in approximation of
these problems but gaining on efficiency with respect to the error.

1.1. Preliminaries

Let T be a 1.5D terrain and let V (T) denote the vertices of T . The complexity
of 1.5D terrain is the number of terrain vertices |V (T)|. We write p < q if p lies
to the left of q and symmetrically, we write p > q if p lies to the right of q. Also,
let V(q) := {p : p ∈ T, q ∼ p} denote a visibility region of a point q. The left and
right visibility region of a point q is defined as VL(q) = {p : p ∈ V(q), p < q} and
VR(q) = {p : p ∈ V(q), p > q} respectively.

Throughout this paper, we consider the discrete version of the problem, i.e. we
are given a finite set of possible guards G ⊂ T and a finite set of points N ⊂ T
and our goal is to select a minimum set of guards X ⊆ G to guard N . It can be
shown that the 1.5D terrain guarding problem instance can be reduced to discrete
one by incurring an extra O(n2) points to the terrain (see [1]). In this work, the
implementations of the 2 variants of the discrete 1.5D terrain guarding problem are
presented:

• In the weighted 1.5D terrain guarding problem we are given a 1.5D terrain
instance T with a set of points N ⊂ T and a set of guards G ⊂ T with
associated weights w : G → R+. The goal is to find a minimum weight set of
guards X ⊆ G to guard all the points in N .

• In the 1.5D terrain guarding problem with demands we are given a 1.5D terrain
instance T with a set of guards G ⊂ T and a set of points N ⊂ T with an
associated demand function d : N → Z+. The goal is to find a minimum guard
set X ⊆ G such that every point p ∈ N is guarded by at least dp := d(p)
different guards.

Special classes of linear programs. Let A be a non-negative m×n real matrix,
and b, c and u are vectors consisting of non-negative real values.

• A packing-covering problem is a primal-dual linear program (LP) pair:

max{cT x : Ax ≤ b, x ≥ 0} = min{bT y : AT y ≥ c, y ≥ 0}, (1)

• Amulti-cover problem with boxed constraints (as a special case of mixed packing-
covering problem) is a primal-dual LP pair:

min
x∈Rn

{cT x : Ax ≥ b, x ≤ u, x ≥ 0} = max
y∈Rm,u∈Rn

{bT y−uT z : AT y−z ≤ c, y ≥ 0, z ≥ 0} (2)

Efficient implementations of Guarding 1.5D Terrains 3

The strong duality property implies the equality in (1) and (2) (for more in-
formation see [2] and references therein). We are interested in finding efficiently
an approximate solution of problem (1) and (2) respectively (note that these linear
programs can be solved in polynomial time due to [9]).

Definition 1. Let ϵ > 0 be some arbitrary constant. An (1 + ϵ)-approximation for
(1) is a primal-dual feasible pair (x, y) such that bT y ≤ (1 + ϵ)cTx.

Definition 2. Let ϵ > 0 be some arbitrary constant. An (1 + ϵ)-approximation for
(2) is a primal-dual feasible pair (x, (y, z)) such that cTx ≤ (1 + ϵ)(bT y − uT z).

Programming environment Gurobi is the state-of-the-art solver for mixed in-
teger linear and mixed integer quadratic programming. The tool employs several
methods in parallel to find efficiently solution of the corresponding optimization
problem (more details in [8]). CUDA (Compute Unified Device Architecture) repre-
sents a computing engine developed for NVIDIA graphics processing units (GPUs)
supporting both graphics and general computing. The CUDA API enables us to
implement parallel computation over the large number of threads running on GPU
cores. Extensive description of CUDA architecture and CUDA API usage can be
found in textbook [13].

2. Implementation of the 1.5D Terrain Guarding algorithms

In this section we present a implementation model of guarding 1.5D terrains. The
generic algorithm for the 1.5D terrain guarding problem can be expressed as Algo-
rithm 1.

1: procedure Terrain-Guarding(T,G,N,w, d)
2: A← Calculate-Visibilty(T,G,N)
3: (A,w, d, u,m, n)← LP-Form(A,w, d)
4: (x∗, y∗)← LP-Solve(A,w, d, u,m, n, ϵ)
5: X0 ← Find-Guard-Points(G ∩N, x∗, α)
6: (G′, N ′, w, d′)← Reduce-Instance(X0, d)
7: (d′L, d

′
R)← Decompose(G′, N ′, d′, x∗)

8: XL ← Left-Guards(T,G′, N ′, w, d′L)
9: XR ← Right-Guards(T,G′, N ′, w, d′R)
10: X ← X0 ∪XL ∪XR

11: return X

Algorithm 1: Generic algorithm for guarding 1.5D terrains

The Calculate-Visibilty procedure receives as an input a 1.5D terrain T and
a set of guards G and a set of vertices N and calculates a visibility matrix for
the pairs G,N of terrain T , i.e. for every point p ∈ N and every guard g ∈ G it
calculates the relation g ∼ p by checking whether all terrain vertices v between g and
p lie strictly below this segment. This step can be done by checking if the triangle
area formed by these 3 points is non-negative, as seen in the Figure 2. The overall
time of this step is O(mnk) where k = |V (T)| (computing determinant takes O(1)
time). Due to our assumption that there are polynomially many guards and points,

4 Efficient implementations of Guarding 1.5D Terrains

g

v′

v

p

g′

P (∆gvp) =
1

2

∣

∣

∣

∣

∣

∣

gx gy 1
vx vy 1
px py 1

∣

∣

∣

∣

∣

∣

> 0 P (∆pv′g′) = 1

2

∣

∣

∣

∣

∣

∣

px py 1
v′
x

v′
y

1
g′
x

g′
y

1

∣

∣

∣

∣

∣

∣

< 0

Figure 2: Determinant method to compute visibility on the terrain.

we present the visibility relation as an binary matrix A ∈ Rm×n for the purpose of
fast visibility queries (A[p][g] = 1 ⇔ p ∼ g).

The procedure LP-Form defines an integer linear program relaxation (i.e, a
linear program) of the corresponding terrain guarding problem:

min
x∈Rn

{wTx : Ax ≤ d, x ≤ u, x ≥ 0} (3)

where A is the computed visibility matrix, w are weights and d demands. Vector
u is an upper-bound on the number of copies of any guard we are able to use.

The fundamental part of the algorithm is LP-Solve procedure which solves (3)
with respect to error parameter ϵ ≥ 0. If ϵ = 0 then the procedure finds an optimal
solution using the state-of-the art LP solvers, else, it returns (1 + ϵ)-approximation
using the approximate solvers presented in [6] and [5] which running-time explicitly
depends on the size of problem and the 1/ϵ parameter.

In the Find-Guard-Points procedure, algorithm chooses the guards that are
also points which have large fractional values with respect to x∗ and parameter α > 0
reducing the problem instance and achieving the condition needed by combinatorial
algorithms developed in [3] and [4].

The Left-Guarding and Right-Guarding procedures are implementations
of the combinatorial algorithms for finding an optimal set of left and right guards.
It’s implementation varies depending on the problem instance (weighted guarding
or guarding with demands).

2.1. Algorithm implementation of Weighted 1.5D Terrain Guard-
ing

The problem instance is represented by (3) where dp = 1, ∀p ∈ N and ug = 1, ∀g ∈ G.
The constraint 0 ≤ x ≤ u is then x ≥ 0 because every point needs no more than one
guard. The problem (3) is than a dual of packing-covering problem (1).

Solving covering-packing problems The LP-Solve for ϵ > 0 gives an (1 + ϵ)-
approximation but with 1/ϵ2 dependency in the running time [6]. The complete
CUDA algorithm for the packing-covering approximate solver is given in [11].

Let us consider, further on, the case when Algorithm 2 returned an (1 + ϵ)-
approximation of the (3) (treated as a covering problem, and appropriate dual as
packing problem), namely, (x′, y′).

Efficient implementations of Guarding 1.5D Terrains 5

1: procedure PC-APX(A, b, c, ϵ)

input: A ∈ Rm×n
+ , b ∈ Rm

+ , c ∈ Rn
+, ϵ > 0

output: (x∗, y∗) such that bT y∗ ≤ (1 + ϵ)cT x∗

2: ϵ′ ← 1− 1/
√
1 + ϵ, δ ← (1 + ϵ′)((1 + ϵ′)m)−1/ϵ′

3: x0(j)← 0, j = 1, . . . , n
4: y0(i)← δ/b(i), i = 1, . . . ,m
5: Ly(j)←

∑
i A(i, j)y(i)/c(j)

6: P (0)← 0, D(0)← m · δ ◃ primal-dual values
7: while D(k) < 1 do
8: q ← argminj Lyk−1

(j)

9: p← argmini b(i)/A(i, q)
10: xk(q)← xk−1(q) + b(p)/A(p, q)

11: yk(i)← yk−1(i)
(
1 + ϵ′

b(p)/A(p,q)
b(i)/A(i,q)

)
, i = 1, . . . ,m

12: P (k)← P (k − 1) + c(q)b(p)/A(p, q)
13: D(k)← D(k − 1) + c(q)b(p)/A(p, q) · ρ(yk−1)

14: ρ← minj Lyk
(j)

15: x(j)← xt(j)/ log1+ϵ′ ((1 + ϵ′)/δ), j = 1, 2, . . . , n
16: y(i)← yt(i)/ρ, i = 1, 2, . . . ,m
17: return (x, y)

Algorithm 2: Approximation scheme for packing-covering problems from [6]

Weighted problem instance reduction Find-Guard-Points finds point-guards
X0 = {g : g ∈ G ∩N,x′g ≥ α} where α = 1/5. Updated terrain guarding instance is
N ′ = N \ {p : g ∼ p, g ∈ X0} and G′ = G \X0 obtaining the condition G′ ∩N ′ = ∅.

Left and right guarding problems The Decompose procedure defines the
partition of points N ′ into two sets NL and NR as

NL =
{
p ∈ N |

∑
g∈VL(p)∩G′ x′g ≥ 1

2

}
, NR =

{
p ∈ N |

∑
g∈VR(p)∩G′ x′g ≥ 1

2

}
.

(4)

1: procedure Weighted-Left-Guarding(T,G,N,w)
2: processing from the left:
3: X ← ∅, Y ← ∅
4: w′(g)← w(g), ∀g ∈ G
5: for p ∈ N processed from left to right do
6: if VL(p) ∩X = ∅ then
7: gp ← argmin{w′(g) : g ∈ VL(p)}
8: w′(g)← w′(g)− w′(gp), ∀g ∈ VL(p) \ {gp}
9: X ← X ∪ {gp}, Y ← Y ∪ {p}
10: Pruning step:
11: for p ∈ Y processed from right to left do
12: if (X \ {gp}) ∩ VL(p) ̸= ∅ then
13: X ← X \ {gp}
14: return X

Algorithm 3: Finding an optimal set of left guards

In terms of generic algorithm notation, we say p ∈ NL ⇔ dp,L = 1 and p ∈ NR ⇔
dp,R = 1. The left guarding problem can be solved in polynomial time optimally as
shown in [3]. The simple procedure shown in Algorithm 3 is a greedy algorithm that
finds a optimal set of left guards XL from G′ that guard all the points in NL (see
[12, on croatian] for a complete proof). By symmetric formulation, the Weighted-
Right-Guarding procedure finds an optimal set of right guards XR from G′ that
guards NR. Both algorithms run in O(mn) time.

6 Efficient implementations of Guarding 1.5D Terrains

Overall approximation of the Weighted 1.5D Terrain Guarding problem
Let (x∗, y∗) denote an optimal (fractional) solution of (3). The LP-Solve procedure
returns (x′, y′) such that∑

p∈N

y′
p ≤

∑
p∈N

y∗
p =

∑
g∈G

wgx
∗
g ≤

∑
g∈G

wgx
′
g ≤ (1 + ϵ)

∑
p∈N

y′
p ≤ (1 + ϵ)

∑
p∈N

y∗
p (5)

We argue that using (1+ ϵ)-approximation can produce an approximate solution
not arbitrarily far from the optimal solution.

Theorem 1. The Weighted 1.5D Terrain Guarding problem with m points and n
guards can be approximated within 5(1+ϵ) factor in O(mnk+ϵ−2n2m log n) time on
a RAM machine, and in O(mnk + ϵ−2mn log n logm) time on the PRAM machine
where ϵ > 0 is an error in (1 + ϵ)-approximation of the corresponding LP solution.

Proof. The analysis tightly follows the analysis from [3] which is given for ϵ = 0.
The cost of rounded point-guards is w(X0) ≤ 1

α

∑
g∈X0

wgx
′
g ≤ 1

α (1 + ϵ)
∑

p∈N y′p.

Moreover, using the same analysis, it can be shown that w(XL) ≤ 5/2
∑

g∈G′ wgx
′
g,

therefore, in overall, and using (5):

w(X0) + w(XL) + w(XR) ≤ 5
∑

g∈X0

wgx
′
g + 5

∑
g∈G′

wgx
′
g ≤ 5(

∑
g∈X0

wgx
′
g +

∑
g∈G′

wgx
′
g)

≤ 5(1 + ϵ)
∑
p∈N

y′p ≤ 5(1 + ϵ)
∑
p∈N

y∗p ≤ 5(1 + ϵ)OPT

where OPT is an optimal solution of the weighted problem. Running time of the
algorithm takes O(ϵ−2n2m log n) steps on the RAM machine due to [6] and CUDA
algorithm takes O(ϵ−2mn log n logm) time due to [11].

3. Algorithm implementation of 1.5D Terrain Guarding prob-
lem with Demands

The problem instance is represented by (3) where wg = 1, ug = 1, ∀g ∈ G. Due to
non-trivial demands, the condition 0 ≤ x ≤ u cannot be simplified and (3) is then a
primal of multi-cover problem with boxed constraints (2).

Solving LPs of multi-cover problems with boxed constraints If the error
parameter ϵ = 0 the procedure LP-Solve uses Gurobi LP solver to solve optimally
LP, otherwise, we use an approximate solver for (2) from [5].

Approximating multi-cover problems with boxed constraints Fleischer [5]
proposed the approximation algorithm based on primal-dual updates described in
Algorithm 4.

Theorem 2 ([5]). Algorithm 4 in O(ϵ−2n2m log(cTu)) time returns an (1 + ϵ)-
approximation of (2).

Let x′ be a feasible solution from a (1 + ϵ)-approximation of (3) returned by
Algorithm 4.

Efficient implementations of Guarding 1.5D Terrains 7

1: procedure Multi-Cover-APX(A, b, c, ϵ)

input: A ∈ Rm×n
+ , b ∈ Zm

+ , c ∈ Rn
+, u ∈ Zn

+, ϵ > 0

output: (x∗, (y∗, z∗)) as (1 + ϵ)-approximation of (2).

2: δ ← (1 + ϵ)((1 + ϵ)cTu)−1/ϵ

3: x(j)← u(j)δ, j = 1, 2, . . . , n, x∗ ← x, (y, z) = (0,0)
4: Lx(i) :=

∑
j A(i, j)x(j)/b(i)

5: α∗ ← mini Lx(i), p← argmini Lx(i)

6: while cT x < 1 do
7: α← (1 + ϵ)Lx(p)

8: while Lx(p) < α and cT x < 1 do
9: Q(p) = {1 ≤ j ≤ n : x(j) < u(j)α}
10: η ← minj∈Q(p)

c(j)
A(p,j)

min{1, u(j)α−x(j)
ϵx(j)

}
11: y(p)← y(p) + η

12: x(j)← x(j)(1 + ϵ
ηA(p,j)

c(j)
), j ∈ Q(p)

13: z(j)← z(j) + ηA(p, j), j ̸∈ Q(p)
14: p← argmini Lx(i)

15: if cT x/α < cT x∗/α∗ then
16: x∗ ← x, α∗ ← α

17: x∗ ← x∗/α∗, (y∗, z∗)← ϵ

ln(1+ϵ
δ

)
(y, z)

18: return (x∗, (y∗, z∗))

Algorithm 4: An approximation scheme for multi-cover problems with boxed con-
straints from [5]

Reduction of the version with demands We update the problem instance with
X0 = {xg : g ∈ G ∩N,x′g ≥ α} where α = 2

5
dmin

dmin+1 (dmin is a minimum demand of
points from N) such that G = G \X0, G = G \X0, dp = dp − |{g : g ∼ p, g ∈ X0}|
achieving the G′ ∩N ′ = ∅ condition.

The left and right multi-guarding The Decompose procedure defines the
portions of demand that should be met from left and right with respect to the
fractional value x′:

dp,L =

(
1 +

1

dmin

) ∑
g∈V′

L
(p)

x
′
g +

1

2
x
′
p

 , dp,R =

(
1 +

1

dmin

) ∑
g∈V′

R
(p)

x
′
g +

1

2
x
′
p

 (6)

There is a combinatorial algorithm given as Algorithm 5 from [4] that can find
a minimum set of left guards XL such that for every point p ∈ N ′ there are d′p,L
different guards in XL that see the point p. By symmetry, the version for the right
guarding, namely, Right-Multi-Guarding algorithm produces set of optimal right
guards. Both algorithms run in O(mn) time.

1: procedure Left-Multi-Guarding(T,G,N, dL)
2: X ← ∅
3: for p ∈ N processed from left to right do
4: while |X ∩ VL(p)| ≤ dp,L do
5: X ← X ∪ L(p)

6: return X

Algorithm 5: Finding optimal set of left guards where points have demands.

Overall approximation of the 1.5D Terrain guarding with demands Let
(x′, (y′, z′)) be a primal-dual (1+ϵ)-approximation returned by LP-Solve procedure

8 Efficient implementations of Guarding 1.5D Terrains

implemented as Algorithm 4. By the definition of (1 + ϵ)-approximation and the
strong LP duality property we have the following condition:∑

p∈N

dpy
∗
p −

∑
g∈G

z∗g =
∑
g∈G

x∗g ≤
∑
g∈G

x′g ≤ (1 + ϵ)
∑
p∈N

(dpy
∗
p −

∑
g∈G

z∗g)

Theorem 3. For the 1.5D Terrain Guarding problem with demands there is a
5/2(1 + ϵ)(1 + 1/dmin)-approximation algorithm in O(mnk + ϵ−2n2m log n) time
on the RAM machine.

Proof. Following the analysis from [4] we can construct a feasible solution for left
and right multi-guarding problem (as an LP formulation) with respect to x′. The
cost of the returned solution is

|X0|+ |XL|+ |XR| ≤
1

α

 ∑
g∈X0

x′
g +

∑
g∈G′

x′
g

 ≤ 1

α
(1 + ϵ)(

∑
p∈N′

dpy
′
p −

∑
g∈G′

z′g)

≤
5

2
(1 +

1

dmin
)(1 + ϵ)OPT

where OPT denotes the optimal solution of guarding problem with demands.

4. Experiments

In this section we test our terrain guarding approximation algorithms againstGurobi
Integer Linear Programming solver for the 1.5D terrain guarding instances. Our im-
plementation uses CUDA programming environment for Algorithm 2 and POSIX
threads to solve in parallel left and right guarding problems.

Platform All the measurements are taken on the quad-core Intel 2.8 MHz i5 pro-
cessor with 8 Gb RAM coupled with GPU processing unit TESLA C2070 with 6
GB of DDR5 RAM having 448 massively threaded processing cores with 1.15 GHz
clock rate that can run in parallel 30000 threads and high memory bandwidth of
144 GB/s.

Tests and Comparisons Testbeds are 1.5D terrains and every vertex of the
terrain is guard and point, i.e. G = N = V (T) with trivial weights and demands.
The input varies on the size of terrains which are randomly generated.

In Table 1 and Table 2 are given experimental results for our testbeds. Number of
terrain vertices is denoted as |V (T)| and d represents a density of the corresponding
visibility matrix. The value of optimal solution returned by Gurobi ILP solver
is given as GRB-OPT with running time GRB-TIME. The value of approximation
returned by our algorithm is given in TG-APX and the running time is given as
TG-TIME. The approximation ratio is expressed as γ. The performance ratio of our
algorithm and Gurobi solver is given in GRB-TIME

TG-TIME . Time measures are expressed
in seconds.

Efficient implementations of Guarding 1.5D Terrains 9

|V (T)| d GRB-OPT TG-APX γ GRB-TIME TG-TIME GRB-TIME
TG-TIME

10 0.44 2 3 1,50 0,00 0,00 0,20
0,52 2 6 3,00 0,00 0,00 0,20
0,72 2 3 1,50 0,00 0,00 0,27

100 0,28 4 6 1,50 0,06 0,16 0,38
0,58 2 2 1,00 0,01 0,04 0,24
0,76 1 2 2,00 0,01 0,04 0,27

1000 0,20 13 22 1,69 1,58 4,82 0,32
0,52 1 2 2,00 0,29 0,44 0,65
0,63 1 2 2,00 0,43 0,43 1,00

2000 0,31 2 2 1,00 1,38 1,10 1,25
0,55 1 2 2,00 1,83 1,03 1,78
0,70 1 2 2,00 2,94 1,03 2,87

5000 0,18 2 2 1,00 9,35 5,01 1,86
0,55 1 2 2,00 93,98 4,76 19,75
0,72 1 2 2,00 107,96 4,75 22,71

8000 0,19 85 148 1,740 98,00 902,662 0,11
0,54 1 2 2,00 245,56 11,609 21,15
0,65 1 2 2,00 284,10 11,572 24,55

Table 1: Gurobi solver vs 5.5-approximation (ϵ = 0.1).

|V (T)| d GRB-OPT TG-APX γ GRB-TIME TG-TIME GRB-TIME
TG-TIME

10 0.44 2 3 1,50 0,00 0,00 0,91
0,52 2 6 3,00 0,00 0,00 1,00
0,72 2 3 1,50 0,00 0,00 1,00

100 0,28 4 6 1,50 0,06 0,04 1,43
0,58 2 2 1,00 0,01 0,01 0,79
0,76 1 2 2,00 0,01 0,01 0,71

1000 0,20 13 21 1,62 1,58 1,45 1,09
0,52 1 2 2,00 0,29 0,16 1,80
0,63 1 2 2,00 0,43 0,16 2,68

2000 0,31 2 2 1,00 1,38 0,37 3,75
0,55 1 2 2,00 1,83 0,37 4,89
0,70 1 2 2,00 2,94 0,57 5,20

5000 0,18 2 2 1,00 9,35 1,70 5,51
0,55 1 2 2,00 93,98 1,63 57,55
0,72 1 2 2,00 107,96 1,62 66,55

8000 0,19 85 148 1,740 98,00 257,94 0,38
0,54 1 2 2,00 245,56 3,95 62,19
0,65 1 2 2,00 284,10 3,93 72,28

Table 2: Gurobi solver vs 6-approximation (ϵ = 0.2).

Based on the results, we can see that our algorithm outperforms Gurobi ILP
solver for larger and denser inputs. The reason for that is that the current imple-
mentation of algorithm is developed for dense matrices and the overhead for ini-
tialization of GPU computation (mapping threads, copying data to device memory
etc.) is evident on lower inputs. Moreover, for larger inputs, CUDA achieves better
performance due to the large number of threads working in parallel. It is also worth
noting, that the number of iteration of Algorithm 2 is much smaller for greater ϵ.
The approximation ratio achieved in these random examples isn’t tight as in the
analysis.

5. Conclusion

We presented an implementation of state-of-the art approximation algorithms for
2 variants of 1.5D terrain guarding problem in multi-threaded parallel environment

10 Efficient implementations of Guarding 1.5D Terrains

using CUDA and POSIX threads. Using (1 + ϵ)-approximation of LP solvers we
induced an error in overall approximation but gained explicit dependency of our
approximation algorithms in terms of 1/ϵ2. We tested our implementation with
Gurobi integer linear programming solver and conclude that our algorithm well
behaves on large and dense inputs depending on the choices of ϵ.

Future work. Rewriting CUDA programs for sparse matrices would also benefit
the performance of our algorithm applied to terrain inputs with sparse visibility
matrices. We believe that our implementation can be used in heuristics for solving
guarding problem on terrain in 3D.

References

[1] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A Constant-Factor Approximation
Algorithm for Optimal 1.5D Terrain Guarding. SIAM J. Comput., 36:1631–1647,
2007.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
March 2004.

[3] K. Elbassioni, E. Krohn, D. Matijević, J. Mestre, and D. Ševerdija. Improved Ap-
proximations for Guarding 1.5-Dimensional Terrains. Algorithmica, 60(2):451–463,
2011.

[4] K. Elbassioni, D. Matijević, and D. Ševerdija. Guarding 1.5D terrains with demands.
International Journal of Computer Mathematics, 89(16):2143–2151, 2012.

[5] L. Fleischer. A fast approximation scheme for fractional covering problems with vari-
able upper bounds. In Proceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’04, pages 1001–1010, Philadelphia, PA, USA, 2004.
Society for Industrial and Applied Mathematics.

[6] Naveen Garg and Jochen Könemann. Faster and Simpler Algorithms for Multicom-
modity Flow and Other Fractional Packing Problems. SIAM Journal on Computing,
37(2):630, 2007.

[7] M. Gibson, G. Kanade, E. Krohn, and K. Varadarajan. An Approximation Scheme
for Terrain Guarding. In Proceedings of the 12th International Workshop and 13th
International Workshop on Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX ’09 / RANDOM ’09, pages 140–148.
Springer-Verlag, 2009.

[8] Inc. Gurobi Optimization. Gurobi optimizer reference manual version 5.6. Houston,
Texas: Gurobi Optimization,, 2014.

[9] L.G. Khachiyan. A polynomial time algorithm for linear programming. Doklady
Akademiia Nauk SSSR, 244:1093–1096, 1979.

[10] J. King and E. Krohn. Terrain guarding is NP-hard. In Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 1580–1593. SIAM,
2010.

[11] G. Martinović, D. Matijević, and D. Ševerdija. CPU-GPU Implementation of a Fast
Approximation Scheme for Covering and Packing Problems. submitted to Journal of
Parallel and Distirbuted Computing, 2014, 2013.

[12] D. Ševerdija. Improved approximation algorithms for guarding 1.5D terrains. PhD
thesis, Faculty of Electrical Engineering, University J. J. Strossmayer of Osijek, 2013.

[13] N. Wilt. The CUDA Handbook: A Comprehensive Guide to GPU Programming. Upper
Saddle River, NJ : Addison-Wesley, 2013.

