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Two models of the capacitated vehicle routing problem
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Abstract. The aim of the Capacitated Vehicle Routing Problem (CVRP) is to find a set
of minimum total cost routes for a fleet of capacitated vehicles based at a single depot,
to serve a set of customers. There exist various integer linear programming models of
the CVRP. One of the main differences lies in the way to eliminate sub-tours, i.e. cycles
that do not go through the depot. In this paper, we describe a well-known flow formulation
of CVRP, where sub-tour elimination constraints have a cardinality exponentially growing
with the number of customers. Then we present a mixed linear programming formulation
with polynomial cardinality of sub-tour elimination constraints. Both of the models were
implemented and compared on several benchmarks.
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1. Introduction and problem description

The Capacitated Vehicle Routing Problem (CVRP) is one of the fundamental prob-
lems in the combinatorial optimization with a number of practical applications in
trans- portation, distribution and logistics. The aim of CVRP is to find a set of
minimum total cost routes for a fleet of capacitated vehicles based at a single depot,
to serve a set of customers under the following constraints:

(1) each route begins and ends at the depot,

(2) each customer is visited exactly once,

(3) the total demand of each route does not exceed the capacity of the vehicle [8].

The first mathematical formulation and algorithm for the solution of the CVRP
was proposed by Dantzig and Ramser [2] in 1959 and five years later, Clarke and
Wright [1] proposed the first heuristic for this problem. To date, many solution
methods for the CVRP have been published. General surveys can be found in
Toth and Vigo [11] and Laporte [7]. The CVRP belongs to the category of NP
hard problems that can be exactly solved only for small instances of the problem.
Therefore, researchers have concentrated on developing heuristic algorithms to solve
this problem (for example [6], [3]).
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2. Mathematical formulation od the CVRP

Let G = (V,H, c) be a complete directed graph with V = {0, 1, 2, . . . , n} as the set
of nodes and H = {(i, j) : i, j ∈ V, i 6= j} as the set of arcs, where node 0 represents
the depot for a fleet of p vehicles with the same capacity Q and remaining n nodes
represent geographically dispersed customers. Each customer i ∈ V −{0} has a cer-
tain positive demand di ≤ Q. The non negative travel cost cij is associated with each
arc (i, j) ∈ H. The cost matrix is symmetric, i.e. cij = cji for all i, j ∈ V, i 6= j and
satisfies the triangular inequality, cij +cjk ≥ cik for all i, j, k ∈ V [12]. The minimum

number of vehicles needed to serve all customers is
⌈∑n

i=1 di

Q

⌉
.

Figure 1 shows an example of a feasible CVRP solution with 7 customers and 3 ve-
hicles of the capacity Q = 50. Customer demands are shown next to the nodes.

Figure 1: n = 7, Q = 50

2.1. A flow based formulation

The binary decision variable xrij is defined to indicate if the vehicle r, r ∈ {1, 2, . . . , p}
traverses an arc (i, j) in an optimal solution. The integer linear programming model
of the CVRP [4] can be written as (CVRP 1):

Minimize
p∑

r=1

n∑
i=0

n∑
j=0,i6=j

cij xrij , (1)
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Subject to

p∑
r=1

n∑
i=0,i6=j

xrij = 1, ∀j ∈ {1, . . . , n}, (2)

n∑
j=1

xr0j = 1, ∀r ∈ {1, . . . , p}, (3)

n∑
i=0,i6=j

xrij =

n∑
i=0

xrji, ∀j ∈ {0, . . . , n}, r ∈ {1, . . . , p}, (4)

n∑
i=0

n∑
j=1,i6=j

dj xrij 5 Q, ∀r ∈ {1, . . . , p}, (5)

p∑
r=1

∑
i∈S

∑
j∈S,i 6=j

xrij 5 |S| − 1, ∀S ⊆ {1, . . . , n}, (6)

xrij ∈ {0, 1}, ∀r ∈ {1, . . . , p}, i, j ∈ {0, . . . , n}, i 6= j. (7)

The objective function (1) minimizes the total travel cost. The model constraints (2)
are the degree constraints and ensure that each customer is visited by exactly one
vehicle. The flow constraints (3) and (4) guarantee that each vehicle can leave the de-
pot only once, and the number of the vehicles arriving at every customer and enter-
ing the depot is equal to the number of the vehicles leaving. In the constraints (5)
the capacity constraints are stated, making sure that the sum of the demands of
the customers visited in a route is less than or equal to the capacity of the vehicle
performing the service. The sub-tour elimination constraints (6) ensure that the so-
lution contains no cycles disconnected from the depot. The remaining obligatory
constraints (7) specify the definition domains of the variables. This model is known
as a three-index vehicle flow formulation. The number of inequalities of the sub-tour
elimination constraints grows exponentially with the number of nodes.

2.2. A modified assignment formulation

In this section, we present our mixed linear programming formulation of CVRP with
a polynomial number of subtour elimination constraints. Two-index decision vari-
ables xij are used as binary variables equal to 1 if arc (i, j) belongs to the optimal
solution and 0 otherwise. For all pairs of nodes i, j ∈ V − {0}, i 6= j we calculate
the savings sij for joining the cycles 0→ i→ 0 and 0→ j → 0 using arc (i, j):

sij = ci0 + c0j − cij

as in Clarke and Wrights saving method [9]. The saving sij is illustrated in Figure 2.
In the left part, customers i and j are served by their own vehicle, in the right part,
customers i and j are served by one vehicle.
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Figure 2: Saving sij for customers i and j in cycle 0→ i→ j → 0

Then, the total routing cost of any feasible solution can be written as:

n∑
i=0

n∑
j=0,i6=j

cij xij =

n∑
i=1

ci0 +

n∑
j=1

c0j −
n∑

i=1

n∑
j=1,i6=j

sij xij ,

where expression
∑n

i=1

∑n
j=1,i6=j sij xij gives the total saving. Now, instead of mini-

mizing the total cost, we will maximize the total saving. To ensure the continuity of
the route and to eliminate sub-tours, we define an auxiliary continuous variable yi,
di ≤ yi ≤ Q for i ∈ V − {0}, which shows (in the case of collecting of the goods)
the vehicle load after visiting customer i [5]. To make the modelling easier, each
feasible route 0 → v1 → v2 → · · · → vk → 0 is replaced by a path from node 0
to node vk, i.e. 0 → v1 → v2 → · · · → vk. For example, a feasible solution is
illustrated in Figure 3. Two values are assigned to each node i the demand di of
customer i and the load yi of a vehicle after visiting customer i (inside the brackets).
The path 0 → 2 → 3 represents the route 0 → 2 → 3 → 0, where customer 2 has
demand d2 = 10, customer 3 has demand d3 = 20, the value of the vehicle load in
node 2 is y2 = 10 and in node 3 is y3 = 30.
This model of the problem can be stated as (CVRP 2):

Maximize
n∑

i=1

n∑
j=1,i6=j

sij xij , (8)

Subject to

n∑
j=1

x0j = p, (9)

n∑
i=0,i6=j

xij = 1, ∀j ∈ {1, . . . , n}, (10)

n∑
j=1,i6=j

xij 5 1, ∀i ∈ {1, . . . , n}, (11)

yi + dj xij −Q (1− xij) 5 yj , ∀i, j ∈ {1, . . . , n}, i 6= j, (12)

di 5 yi 5 Q, ∀i ∈ {1, . . . , n}, (13)

xij ∈ {0, 1}, ∀i, j ∈ {0, . . . , n}, i 6= j. (14)
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In this formulation, the objective function (8) maximizes the total travel saving.
The constraints (9) impose that exactly p arcs leave the depot, (10) and (11) are
the indegree and outdegree constraints for customers. Constraints (12) are the route
continuity and sub-tour elimination constraints, ensuring that the solution contains
no sub-tour disconnected from the depot, and that the vehicle load is a non-de-
creasing step function in accordance with the demand of the customers who are
on the route of the vehicle. The constraints given in (13) are capacity bounding
constraints which restrict the upper and lower bounds of yi and constraints (14) are
obligatory constraints.

Figure 3: n = 7, Q = 50

3. Computational results

Both of the models were coded in Python 3.4 [15] and solved using Gurobi 6.5 [14]
on a PC with Intel Xeon 32 cores, 2,4 GHz, 256 GB RAM. We conducted our exper-
iments on 8 instances, taken from two classical sets of the CVRP benchmark from
Augerat et al. (set P) and Christofides and Elion (set E). The input data are avail-
able online at [13]. The Capacitated Vehicle Routing Problem is a NP hard problem
that can be solved exactly only for small instances of the problem. Therefore, we
took the instances with 12 to 22 customers and with 2 to 8 vehicles. All selected
instances were solved to optimality by both formulations. Table 1 shows the com-
parison of two formulations by CPU time required to get an optimal solution. Each
instance data was run five times and the average computational time is tabulated.
From Table 1 it is evident that CVRP 1 consumed a lot of CPU time to get an op-
timal solution. This can be explained as follows: because the number of inequalities
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Time (sec) Ratio
Instance Q n p Optimal CVRP 1 CVRP 2 CVRP 1/CVRP 2

P-n16-k8 35 15 8 450 233,72 0,43 543,5

P-n19-k2 160 18 2 212 9,09 4,72 1,9

P-n20-k2 160 19 2 216 8,80 2,52 3,5

P-n21-k2 160 20 2 211 3,22 0,73 4,4

P-n22-k2 160 21 2 216 4,96 3,35 1,5

E-n13-k4 6000 12 4 247 0,83 0,29 2,9

E-n22-k4 6000 21 4 375 3435,13 25,16 136,5

E-n23-k3 4500 22 3 569 25,34 1,94 13,0

Q–vehicle capacity, n–number of customers, p–number of vehicles

Table 1: Comparison of computational times

of the sub-tour elimination constraints in this formulation grows exponentially with
the number of nodes, it is impractical to solve these constraints at once. There-
fore, in our implementation, these constraints are initially relaxed and they are
dynamically generated during the optimization process once they are found to be
violated [10]. We note also that the three-index formulation CVRP 1 uses p times
more integer variables than the two-index formulation CVRP 2. The formulation
CVRP 2 is a polynomial size, i.e. it has O(n2) constraints, therefore it has a higher
computational efficiency than the formulation CVRP 1.

4. Conclusion

In this paper, we concentrated on two integer linear programming formulations of
CVRP: the flow formulation (CVRP 1) and the modified assignment formulation
(CVRP 2). These formulations differ in the manner of eliminating sub-tours, but
also in the number of integer variables. Next, we plan to compare them in terms of
linear programming relaxations.

The presented modified assignment formulation CVRP 2 has polynomial size and is
easy to use. In the future, we will expand our research by extending this model for
the solution of larger instances.
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