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Abstract. We consider a linear programming problem, in which possibly all coefficients are subject to
uncertainty in the form of deterministic intervals. The problem of computing the worst case optimal
value has already been thoroughly investigated in the past. Notice that it might happen that the value
can be infinite due to infeasibility of some instances. This is a serious drawback if we know a priori that
all instances should be feasible. Therefore we focus on the feasible instances only and study the problem
of computing the worst case finite optimal value. We present a characterization for the general case and
investigate special cases, too. We show that the problem is easy to solve provided interval uncertainty
affects the objective function only, but the problem becomes intractable in case of intervals in the right-
hand side of the constraints. We also propose a finite reduction based on inspecting candidate bases.
We show that processing a given basis is still an NP-hard problem even with non-interval constraint
matrix, however, the problem becomes tractable as long as uncertain coefficients are situated either in
the objective function or in the right-hand side only.
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1. Introduction

Consider a linear programming (LP) problem

f(A, b, c) = min cTx subject to x ∈M(A, b), (1)

where M(A, b) is the feasible set with constraint matrix A ∈ Rm×n and the right-hand side
vector b ∈ Rm. We use the convention min ∅ = ∞ and max ∅ = −∞. Basically, one of the
following canonical forms

f(A, b, c) = min cTx subject to Ax = b, x ≥ 0, (A)

f(A, b, c) = min cTx subject to Ax ≤ b, (B)

f(A, b, c) = min cTx subject to Ax ≤ b, x ≥ 0 (C)

is usually considered. As was repeatedly observed, in the interval setting, these forms are not
equivalent to each other in general [10, 12, 17], so they have to be analyzed separately. We can
consider a general form involving all the canonical forms together [13], but from the sake of
exposition, it is better to consider the canonical forms separately.
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Interval data. An interval matrix is defined as the set

A = {A ∈ Rm×n; A ≤ A ≤ A},

where A,A ∈ Rm×n, A ≤ A are given matrices. We will use also the notion of the midpoint
and radius matrix defined respectively as

Ac :=
1

2
(A + A), A∆ :=

1

2
(A−A).

The set of all m × n interval matrices is denoted by IRm×n. Similar notation is used for
interval vectors, considered as one column interval matrices, and interval numbers. For interval
arithmetic see, e.g., the textbooks [20, 22].

Interval linear programming. Let A ∈ IRm×n, b ∈ IRm and c ∈ IRn be given. By an
interval linear programming problem we mean a family of LP problems (1) with A ∈ A, b ∈ b
and c ∈ c. A particular LP problem from this family is called a realization.

In the recent years, the optimal value range problem was intensively studied. The problem
consists of determining the best case and worst case optimal values defined as

f := min f(A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f(A, b, c) subject to A ∈ A, b ∈ b, c ∈ c.

The interval f = [f, f ] then gives us the range of optimal values of the interval LP problem;
each realization (1) has the optimal value in f . If we define the image of optimal values

f(A, b, c) := {f(A, b, c) | A ∈ A, b ∈ b, c ∈ c},

then the optimal value range alternatively reads

f := min f(A, b, c),

f := max f(A, b, c).

References [6, 12] present a survey on this topic. Methods and formulae for determining f

and f were discussed in [5, 11, 21, 24]. Some of the values are easily computable, but some are
NP-hard, depending of the particular form (A)–(C) of the LP problem. The hard cases are f
for type (A) and f for type (B); NP-hardness was proved in [6, 7, 26, 28]. Hlad́ık [15] proposes
approximation method for the intractable cases. Garajová et al. [10] study what is the effect
of transformations of the constraints on the optimal value range, among others.

Besides the optimal value range problem also the effects on the optimal solution set were
investigated. See [2, 16, 19] for some of the recent results and the types of solutions considered.

Problem formulation. The worst case optimal value f can be infinite (i.e., f =∞) due to
infeasibility of some realization. However, in many situations, we know a priori or can assure
that all instances are feasible; a typical example is the transportation problem [4]. Therefore,
we focus on feasible realizations only and define the worst case finite optimal value as

ffin := max f(A, b, c) subject to A ∈ A, b ∈ b, c ∈ c, f(A, b, c) <∞.

Example 1. Consider the interval LP problem

min x subject to x ≤ [−1, 1], x ≥ 0.

Choosing a negative value from the interval [−1, 1], we obtain an infeasible LP problem. Choos-
ing a nonnegative value, the resulting optimal value is zero. Therefore f(A, b, c) = {0,∞} and
f = [f, f ] = [0,∞], but ffin = 0.
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We will assume that there is at least one infeasible realization, that is, f(A, b, c) = ∞
for some A ∈ A, b ∈ b and c ∈ c; methods for checking this property are discussed in [6, 13],
among others. Otherwise, if every realization is feasible, then ffin = f , and we can use standard

techniques for computing f .

2. General results

As the following example shows, even the value of ffin can be infinite. We will show later in
Proposition 5 that this happen only if there are intervals in the constraint matrix.

Example 2. Consider the interval LP problem

min −x1 subject to [0, 1]x2 = −1, x1 − x2 = 0, x1, x2 ≤ 0.

By direct inspection, we observe that f(A, b, c) = [1,∞] and f = [1,∞]. We have f = ∞
because the LP problem is infeasible when choosing the zero from the interval [0, 1]. However,
we have also ffin =∞ since the optimal value f(A, b, c)→∞ as the selection from [0, 1] tends
to zero.

Denote by

g(A, b, c) = max bT y subject to y ∈ N(AT , c) (2)

the dual problem to (1). For the canonical forms (A)–(C), the dual problems respectively read

g(A, b, c) = max bT y subject to AT y ≤ c, (A)

g(A, b, c) = max bT y subject to AT y = c, y ≤ 0, (B)

g(A, b, c) = max bT y subject to AT y ≤ c, y ≤ 0. (C)

By duality in linear programming, we can replace the inner optimization problem in the
definition of ffin by its dual problem with no additional assumptions. This is a bit surprising
since duality in real or interval liner programming usually needs some kind of (strong) feasibility;
see Novotná et al. [23].

Proposition 1. We have

ffin = max g(A, b, c) subject to A ∈ A, b ∈ b, c ∈ c, g(A, b, c) <∞. (3)

Proof. By strong duality in linear programming, both primal and dual problems have the same
optimal value as long as at least one of them is feasible. If the primal problem is infeasible for
every realization of interval data, then the dual problem is for every realization either infeasible
or unbounded. In any case, both sides of (3) are equal to −∞. Thus we will assume that the
feasible set M(A, b) is nonempty for at least one realization. The assumption ensures feasibility
of at lest one realization, so we can replace the primal problem by the dual one. Notice that
feasibility of all realizations is not necessary to assume since primarily infeasible instances are
idle for both primal and dual problems.

The advantage of the formula (3) is that the “max min” optimization problem is reduced to
“max max” problem

ffin = max bT y subject to y ∈ N(AT , c), M(A, b) 6= ∅, A ∈ A, b ∈ b, c ∈ c, (4)

which can be hopefully more easy to deal with.
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3. Special cases with A real

In this section, we focus on certain sub-classes of the main problem. In particular, we consider
the case with real constraint matrix, i.e., A∆ = 0. This case is not much on restriction on
generality since the matrix A characterizes the structure of the model and often is fixed. This
is particularly true in transportations problems or flows in networks [1, 27]. In contrast, costs
c in the objective function and capacities corresponding to the right-hand side vectors b are
typically affected various kinds of uncertainties.

As we already mentioned, transformations between the LP forms (A)–(C) is not equivalent
in general. Nevertheless, in some cases, it is possible. Garajová et al. [10] showed that provided
A is real, finite optimal values (and therefore also ffin) is not changed under the following
transformations:

• transform an interval LP problem of type (A)

min cTx subject to Ax = b, x ≥ 0

to form (C) splitting equations to double inequalities

min cTx subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

• transform an interval LP problem of type (B)

min cTx subject to Ax ≤ b

to form (C) by imposing nonnegativity of variables

min cTx+ − cTx− subject to Ax+ −Ax− ≤ b, x+, x− ≥ 0.

In Garajová et al. [10], it was also observed that the first transformation may change finite
optimal values in the case with interval A. Below, we show by an example that this is also true
for the second transformation.

Example 3. Consider the interval LP problem of type (B)

min −x subject to [0, 1]x ≤ −1, −[1, 2]x ≤ 5.

It is easy to see that f = [1, 5] ∪ {∞} and ffin = 5. Imposing nonnegativity of variables leads
to the interval LP problem

min −x+ + x− subject to [0, 1]x+ − [0, 1]x− ≤ −1, −[1, 2]x+ + [1, 2]x− ≤ 5.

Now, the set of optimal values expands significantly. For instance, the realization

min −x+ + x− subject to 0.1x+ − 0.1x− ≤ −1, −2x+ + 1x− ≤ 5

has the optimal value of 10. By direct inspection, we can see that f = {−∞}∪ [1,∞]. That is,
the worst case finite optimal value grows to ffin =∞.

3.1. Interval objective function

If interval data are situated in the objective vector only, computation of ffin is easy just by
solving one LP problem.

Proposition 2. If A and b are real, then computation of ffin is a polynomial problem.
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Proof. Under the assumptions, the problem (4) takes the form of an LP problem in variables
x, y, c. Moreover, the variable c can be easily eliminated. For types (A) and (C) in particular,
the resulting LP problem draw, respectively

ffin = max bT y subject to Ax = b, x ≥ 0, AT y ≤ c, (5)

ffin = max bT y subject to Ax ≤ b, x ≥ 0, AT y ≤ c, y ≤ 0. (6)

For type (B) we have

ffin = max bT y subject to Ax ≤ b, c ≤ AT y ≤ c, y ≤ 0.

Corollary 1. Suppose that A and b are real and M(A, b) 6= ∅. For interval LP problems of
types (A) and (C) the value of ffin is attained at c := c.

Proof. Due to M(A, b) 6= ∅, problems (5) and (6) take respectively the form of

ffin = max bT y subject to AT y ≤ c,

ffin = max bT y subject to AT y ≤ c, y ≤ 0.

Again by M(A, b) 6= ∅, we can replace the LP problems by their duals

ffin = min cTx subject to Ax = b, x ≥ 0,

ffin = min cTx subject to Ax ≤ b, x ≥ 0.

The LP problems on the right-hand sides yield ffin for the corresponding LP forms.

Notice that for LP problems of type (B), this property is not true. In general, ffin is not
attained for extremal values of c, which is illustrated by the following example.

Example 4. Consider the interval LP problem of type (B)

min −x1 + c2x2 subject to x1 + x2 ≤ 2, −x1 + x2 ≤ 0,

where c2 ∈ c2 = −[0.5, 2]. It is not hard to see that ffin = f = −2, and it is attained for the

value of c2 := −1 at the point x = (1, 1)T . For smaller c2, the optimal value is −1 + c2 < −2.
For larger c2, the optimal value is −∞ since the problem is unbounded.

3.2. Interval right-hand side

In contrast to the previous case, if interval data are situated in the right-hand side vector only
(i.e., A∆ = 0 and c∆ = 0), computation of ffin is intractable.

Proposition 3. If A and c are real, then checking ffin > 0 is NP-hard for type (A).

Proof. By [9], checking whether there is at least one feasible realization of the interval system

AT y ≤ 0, bT y > 0

is an NP-hard problem. Hence it is NP-hard to check f > 0 (not yet speaking about ffin) for
the interval LP problem

max bT y subject to AT y ≤ 0.
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Due to positive homogeneity of the constraints, we can rewrite the problem as

max bT y subject to AT y ≤ 0, y ≤ e, −y ≤ e, (7)

where e = (1, . . . , 1)T . For this interval problem, checking ffin > 0 is NP-hard.
The interval problem (7) follows the form (3); the condition g(A, b, c) < ∞ needn’t be

considered since the problem is feasible and finite for each realization. Thus we can view this
problem as the dual of an interval LP problem of type (A), which has a fixed objective function
vector and a fixed constraint matrix.

Corollary 2. If A and c are real, then checking ffin > 0 is NP-hard for type (B) and for
type (C).

Proof. By Proposition 3, checking ffin > 0 is NP-hard for an interval LP problem

min cTx subject to Ax = b, x ≥ 0.

According to the discussion at the beginning of Section 3, the value of ffin is not changed under
the transformation of equations to double inequalities

min cTx subject to Ax ≤ b, Ax ≥ b, x ≥ 0.

This is, however, a type (C) problem, which must therefore be NP-hard.
Type (B) problems are also NP-hard since every problem in the form of (C) is essentially

in the form of (B).

Despite intractability, computation of ffin need not be always so hard. If A is real, then
(4) takes the form of a bilinear programming problem, that is, the constraints are linear and
the objective function is bilinear (with respect to variables y, b, c). Even though it is NP-hard,
some instances may be faster solvable.

Example 5. Consider an interval LP problem in the form

min cTx subject to Ax ≥ b

with b > 0. Then (4) reads

ffin = max bT y subject to Ax ≥ b, AT y = c, y ≥ 0, b ∈ b.

Since the variables are nonnegative, it has the special form of a geometric program, and hence
it is efficiently solvable [3].

4. Basis approach

If the LP problem (1) has a finite optimal value, then it possesses an optimal solution cor-
responding to an optimal basis. For concreteness, consider type (A) problem. A basis B is
optimal if and only if the following two conditions are satisfied

A−1
B b ≥ 0, (8a)

cTN − cTBA
−1
B AN ≥ 0T . (8b)

The optimal value then is f(A, b, c) = cTBA
−1
B b.

Given a basis B and an interval LP problem, we will now address the question what is
the highest optimal value achievable at this basis. This can be formulated as an optimization
problem

max cTBA
−1
B b subject to (8), A ∈ A, b ∈ b, c ∈ c. (9)
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Real constraint matrix. Suppose from now on that A is real. Then the optimization
problem (9) reads

max cTBA
−1
B b subject to (8), b ∈ b, c ∈ c. (10)

Its constrains are linear in variables b, c. Therefore, checking its feasibility is an easy task. In
accordance with [12], we say that a basis B is weakly optimal if it admits at least one finite
optimal value, that is, B is optimal for some realization. From the above reasoning, we have

Proposition 4. Checking whether a basis B is weakly optimal is a polynomial problem.

The feasible set of (10) is bounded, so the optimal value is bounded, too. Since there are
finitely many basis, the worst case finite optimal value must be finite. Hence we just derived

Proposition 5. If A is real, then ffin <∞.

If c is real, then (9) takes the form of an LP problem

max cTBA
−1
B b subject to (8), b ∈ b, (11)

and so it is polynomially solvable. Similarly in the case when b is real.

Proposition 6. If A, b are real or A, c are real, then solving (9) is polynomial.

Solving problem (9) with A real and b, c interval values is, however, still intractable.

Proposition 7. If A is real, then solving (9) is NP-hard.

Proof. By Witsenhausen [29], it is NP-hard to find the maximum value of a bilinear form
uTMv on interval domain u, v ∈ [0, 1]n, where M is symmetric nonsingular. We will reduce
this problem to our problem. We put b := [0, 1]n and AB := In, where In is the identity matrix.
Next, we substitute cB := Mu. The condition

cB = Mu, u ∈ [0, 1]n

is equivalent to
0 ≤M−1cB ≤ 1,

so we can formulate it as (8b) for AN = (M−1,−M−1) and cN = (1T , 0T )T . The condition
(8a) is trivially satisfied as A−1

B b = b ∈ [0, 1]n. This completes the reduction.

Real A and c. By Proposition 3 we know that computing ffin is NP-hard even when A and c
are real, and intervals are situated in the right-hand side vector b only. The above considerations
give us a finite reduction for computing ffin : For each basis B, check if it is weakly optimal and
determine the worst case optimal value associated with B by solving the LP problem (11).

In this way, the box b splits into convex polyhedral sub-parts, which are usually called
stability or critical regions in the context of sensitivity analysis and parametric programming [8].
Each region corresponds to a weakly optimal basis. In the area of interval linear programming,
but in another context, stability regions were also discussed in Mráz [21].

The obvious drawback of this approach is that there are exponentially many bases. On
the other hand, the number of weakly optimal bases might be reasonably small. In order to
process them, consider the following graph. The nodes correspond to weakly optimal bases.
There is an edge between two nodes if and only if the corresponding bases are neighbors, that
is, they differ in exactly one entry (the basic index sets differ in one entry). Since the set b
of the objective vectors of the dual problem (2) is convex and compact, the graph of weakly



252 Milan Hlad́ık

1

2

3

4

5

6

−1

−2

1 2 3 4 5 6 7 8 9 10 11 12 130

N(AT , c)

y1

y2

y1

y2

b

Figure 1: (Example 6) Illustration of the dual problem: for different values of the objective vector b, the optimal
solution moves from y1 to y2 and to unbounded instances.

optimal bases is connected. Therefore, we can start with one weakly optimal basis, inspect the
neighboring bases for weak optimality and process until all weakly optimal bases are found.

This method can be significantly faster than processing all possible bases. In particular, if
the interval vector b is narrow, then we can expect that the number of weakly optimal basis is
small, or even there is a unique one. This case of unique basis is called basis stable problem
and was investigated in [14, 18, 25]. Even though it is NP-hard to check for basis stability of
a basis B for a general interval LP problem, there are practically efficient sufficient conditions;
see [14].

Moreover, basis stability is polynomially decidable provided A, b or A, c are real, which is
our case. Concretely, we have to verify two conditions. First, check (8b), which is easy as all
data are constant. Second, compute by interval arithmetic the expression A−1

B b, and check that
the lower bound is nonnegative.

Example 6. Consider the interval LP problem of type (A) with data

A =

(
1 2 0 −1 −1
1 1 1 1 0

)
, b =

(
[3, 5]
[2, 4]

)
, c =

(
10 20 5 3 1

)T
.

The dual problem is illustrated on Figure 1. There are two weakly optimal bases, B = {1, 2}
and B′ = {1, 3}. On the figure, they correspond to vertices y1 = (10, 0)T and y2 = (5, 5)T .

For basis B, the constraint A−1
B b ≥ 0 from (8a) takes the form

−b1 + 2b2 ≥ 0,

b1 − b2 ≥ 0.

By the LP problem (11), we compute the value of the highest optimal value corresponding to
this basis as 50.

For basis B′, the constraint A−1
B b ≥ 0 draws

b1 ≥ 0,

−b1 + b2 ≥ 0.

The LP problem (11) now gives the value of 40 for the highest optimal value associated to B′.
In total, we see that the worst case optimal value is ffin = 50 and it is attained for basis B.

Figure 2 depicts the interval vector b and its subparts corresponding to the optimal bases B and
B′ and to infeasible instances.
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Figure 2: (Example 6) The sub-parts of interval vector b corresponding to the optimal bases B and B′ and to
infeasible instances.

5. Conclusion

We investigated the problem of computing the highest possible optimal value when input data
are subject to variations in given intervals and we restrict to feasible instances only. We analyzed
the computational complexity issues by identifying the cases that are already polynomially
solvable and those that are still NP-hard. The basis reduction proposes an approach that is
not a priori exponential even for the NP-hard cases.

Several open questions arised during the work on the topic. This includes for example the
problem of what is the computational complexity of this question: Is ffin attained for a given
basis B?
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