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Abstract. This paper deals with fully fuzzy linear programming (FFLP) problem in which all param-
eters and variables are characterized by L − R fuzzy numbers. By a proposed approach, the FFLP
problem is converted into the triple objective functions, and hence a single objective using the weight-
ing method. Through this approach the problem is not transformed into the crisp linear programming
problem (LPP) that is enable for obtaining fuzzy optimal solution and the corresponding fuzzy optimal
solution which is more realistic to the real world problems. Then a numerical example is taken to the
utility and clarify the practically and the efficiency of the approach.
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1. Introduction

Linear programming (LP) is a branch of mathematical programming designed to solve opti-
mization problem for which all the constraints and objective functions are linear functions. LP
is an approach for finding the answer fittest from a range of possible answers. LP problems
have enormous applications as in arising in business, government, industry, hospitals, libraries,
etc. It is clear that LP is in two forms: Classical LP and Fuzzy LP. Bector and Chandra [2]
classified the fuzzy LP problems into four categories:

• Type I. LP with fuzzy inequalities and crisp objective function,

• Type II. LP with crisp inequalities and fuzzy objective function,

• Type III. LP with fuzzy inequalities and fuzzy objective function and

• Type IV. LP with fuzzy parameters.

In many scientific areas, such as system analysis and operations research, a model has to be
set up using data which is only approximately known. Fuzzy sets theory, introduced by Zadeh
[30], makes this possible. Dubois and Prade [10] extended the use of algebraic operations on
real numbers to fuzzy numbers by the use a fuzzification principle.
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Since the pioneer work on fuzzy LP by Tanaka et al. [28] and Zimmermann [33]. Several
kinds of fuzzy LP problems of satisfying different constraints were appeared in the literature so
far and with them corresponding approaches of resolution have proposed too. Tanaka et al. [29]
formulated a fuzzy linear programming (FLP) problem to obtain a reasonable solution under
consideration of the ambiguity of parameters. Zhao et al. [31] studied the complete solution
set for fuzzy linear programming problems included fuzzy and non-fuzzy equality and inequal-
ity constraints. The basic concepts of fuzzy decision making in fuzzy environment were first
proposed by Bellman and Zadeh [3] The first formulation of fuzzy LP problems was proposed
by Zimmermann [33], Shaocheng [27], Buckley [4, 5] and others considered situation where all
parameters are fuzzy. Li and Shi [18] studied fuzzy LP problems with interval- value fuzzy
coefficients, where corresponding auxiliary models in different criteria are obtained. Zhong et
al. [32] studied LP problem with fuzzy random variable coefficients and fuzzy pseudorandom
variables. Maleki et al. [19] proposed a new method for solving LP problem with fuzzy variables
based on the concept of comparison of fuzzy numbers. The references [6, 7, 8, 21, 24, 28] studied
fuzzy mathematical programming with fuzzy number coefficients. Ishibuchi and Tanaka [15]
investigated mathematical programming problem with interval objective function coefficients.

The fuzzy LP problems in which all the parameters as well as variables are represented by
fuzzy numbers is known as FFLP problems. FFLP has many different applications in sciences
and engineering, and various methods have been proposed for solving it. FFLP problems can
be divided into two categories: FFLP with equality constraints and with equality constraints.
Kumar et al. [17] proposed a new method for solving fully fuzzy LP problem with equality con-
straints and determined the optimal fuzzy solution for it. Hashemi et al. [13] and Allahviranloo
et al. [1] proposed different methods for FFLP problems with inequality constraints. Sahaya
Sudha and Karpagamani [23] discussed FFLP problem with trapezoidal fuzzy numbers with
the help of linear system and ranking function. Rajarajeswari and Sahaya Sudha [22] proposed
a new method for solving FFLP problem. Based on Lexicography method, Shamooshaki et al.
[26] proposed a new method for solving FFLP problem. Hosseinzadeh and Edalatpanah [14]
proposed a new method for solving FFLP based on the L−R fuzzy numbers and the Lexicog-
raphy method. Das [8] developed a modified algorithm to find the fuzzy optimal solution for
the FFLP problem with equality constraints. Through the MOLP problem and extended L-R
fuzzy numbers, Gong et al. [12] and Ezzati et al. [11] solved FFLP problems. Das et al. [9]
used the ranking function for solving FFLP problem with mixed constraints so as to overcome
limitations.

The rest of the paper is organized as follows. In Section 2, some preliminaries need in the
paper are introduced. In Section 3, a fully fuzzy linear programming problem is formulated.
In Section 4, a method for solving the FFLP problem is proposed. In Section 5, a numerical
example is given for illustration. Finally, some concluding remarks are reported in Section 6.

2. Preliminaries

In order to discuss our problem conveniently, basic concepts and results related to fuzzy num-
bers, L-R fuzzy numbers and their arithmetic operations are recalled (Kaufmann and Gupta
[16], Bellman and Zadeh [3], Sakawa [25] and Hosseinzadeh and Edalatpanah [14]).

Definition 1. A fuzzy number ã is mapping µã : R→ [0, 1] with following properties:

i) µã(x) is an upper semi–continuous membership function,
ii) ã is a convex fuzzy set, i.e. µã(λx+ (1− λ)y) ≥ min{µã(x), µã(y)} for all

x, y ∈ R and 0 ≤ λ ≤ 1,
iii) ã is normal, i.e. ∃x0 ∈ R for which µã(x0) = 1,
iv) supp(ã) = {x ∈ R : µã > 0} is the support of the ã and its closure cl(supp(ã))

is compact set.
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Definition 2. A triangular fuzzy number can be represented completely by a triplet Ã =
(a1, a2, a3) and has membership:

µÃ(x) =



0 if x < a1,

x− a1
a2 − a1

if a1 ≤ x ≤ a2,

a3 − x
a3 − a2

if a2 ≤ x ≤ a3,

0 if x > a3.

Definition 3. A fuzzy number B̃ is said to be L−R type if

µB̃(x) =


L

(
m− x
α

)
if x ≤ m and α > 0,

R

(
x−m
β

)
if x ≥ m and β > 0,

where m is the mean value of B̃, α and β are left and right spreads, respectively, and a function
L(·) is a left shape function satisfying

i) L(x) = L(−x),

ii) L(0) = 1,

iii) L(x) is non decreasing on[0, ∞).

Similarly, a right shape function R(·) is defined as L(·). Symbolically, a L−R fuzzy number
B̃ can be written as B̃ = (b, α, β)LR.

Figure 1: L–R fuzzy number

The formulas of addition, subtraction, opposite, multiplication and order relation for Ã =
(a, γ, δ)LR and B̃ = (b, α, β)LR are

• addition Ã⊕ B̃ = (a+ b, γ + α, δ + β)LR

• opposite −Ã = (−a, γ, δ)LR

• substraction Ã(−)B̃ = (a− b, γ + β, δ + α)LR
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• multiplication Ã⊗ B̃:

if Ã > 0 and B̃ > 0 then Ã⊗ B̃ ∼= (ab, aα+ bγ, aβ + bδ)LR,
if Ã < 0 and B̃ > 0 then Ã⊗ B̃ ∼= (ab,−bδ − aβ,−bγ − aα)LR,
if Ã < 0 and B̃ < 0 then Ã⊗ B̃ ∼= (ab, bγ − aβ, bδ − aα)LR

• inverse Ã−1 ∼= (a−1, δa−2, γa−2)LR

• order relation Ã(<)B̃ iff a < b, or a = b and (γ+ δ) > (α+β) or a = b, (γ+ δ) =
(α+ β) and (2a− γ + δ) < (2b− α+ β)

3. Problem formulation and solution concepts

A fully fuzzy linear programming problem can be formulated as follows

minZ̃ = C̃T ⊗ X̃
s.t. Ã⊗ X̃ = B̃,

X̃ ≥ 0̃,

(1)

where C̃T = (c̃j)1×n, X̃ = (x̃j)n×1, Ã = (ãij)m×n, B̃ = (b̃i)m×1 and c̃j , x̃j , ãij , b̃i ∈ F0(R).
Through this paper F0(R) is the set of all L−R fuzzy numbers on R.

Definition 4. The x̃∗ which satisfies the conditions in problem (1) is called a fuzzy optimization
solution [32].

The FFLP problem (1) may be written as

minZ̃ =

n∑
j=1

(cj , αj , βj)LR ⊗ (xj , ζj , ξj)LR

s.t.

n∑
j=1

(aij , εij , φij)LR ⊗ (xj , ζj , ξj)LR = (bi, µi, vi)LR,

(xj , ζj , ξj)LR ≥ 0̃.

(2)

Using the arithmetic operations of L−R fuzzy numbers, problem (2) may be rewritten as

minZ̃ =

n∑
j=1

(cjxj , cjζj + αjxj , cjξj + βjxj)LR

s.t.

n∑
j=1

(aijxj , aijζj + εijxj , aijξj + φijxj)LR = (bi, µi, vi)LR,

(xj , ζj , ξj)LR ≥ 0̃.

(3)
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Also, from problem (3) we have the following problem

minZ̃ =

n∑
j=1

(
(cjxj)

L, (cjxj)
C , (cjxj)

U

)

s.t. x ∈ X =



n∑
j=1

aijxj = bi, i = 1, 2, ...,m

n∑
j=1

(aijζj + εijxj , aijξj + φijxj) = µi + vi, ∀i

n∑
j=1

(
2aijxj − (aijζj + εijxj) + (aijξj + φijxj)

)
= 2bi − µi + vi ∀i

xj , ζj , ξj ≥ 0 ∀j,

(4)

where (cjxj)
C = cjxj , (cjxj)

L = cjxj − (aijζj + εijxj) and (cjxj)
U = cjxj + (cjξj + βjxj).

From problem (4) we have the following MOLP problem

minf1 = (cjxj)
C

minf2 = (cjxj)
U − (cjxj)

L

minf3 = (cjxj)
U + (cjxj)

L

s.t. x ∈ X.

(5)

Definition 5. (Pareto optimal solution) x0 ∈ X is said to be Pereto optimal solution to problem
(5) if and only if there does not exist another x ∈ X such that f1(x) ≤ f1(x0), f2(x) ≥ Z2(x0)
and f3(x) ≤ f3(x0), and f1(x) 6= f1(x0), f2(x) ≥ f2(x0) or f3(x) 6= f3(x0).

Problem (5) can be treated using the weighting method [20] as

minE = (w1f1 − w2f2 + w3f3)

s.t. x ∈ X, wi ≥ 0,

3∑
i=1

wi = 1.
(6)

4. Proposed approach

The steps of the proposed approach for solving the FFLP problem (1) can be summarized as:

Step 1: Consider the FFLP problem (1)

Step 2: Convert the problem (1) into problem (4)

Step 3: Transform the problem (4) into the MOLP problem (5), and then into problem (6)

Step 4: Solve the problem (6) to obtain the efficient solution

Step 5: Referring to problem (1) for determining the fuzzy optimal solution and the
corresponding fuzzy optimum value

Step 6: Stop
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5. Numerical example

Consider the following FFLP problem

minZ̃ = (2, 1, 1)LR ⊗ x̃1 ⊕ (3, 1, 1)LR ⊗ x̃2
s.t. (1, 1, 1)LR ⊗ x̃1 ⊕ (2, 1, 1)LR ⊗ x̃2 = (10, 8, 14)LR

(2, 1, 1)LR ⊗ x̃1 ⊕ (1, 1, 1)LR ⊗ x̃2 = (8, 7, 13)LR

x̃1, x̃2 ≥ 0, x̃1, x̃2 ∈ F0(R).

(7)

Based on the proposed approach, the above FFLP problem can be written as

minf1 = 2x1 + 3x2

minf2 = 2x1 + 2x2 + 2ξ1 + 3ξ2 + 2ζ1 + 3ζ2

minf3 = 4x1 + 6x2 + 2ξ1 + 3ξ2 − 2ζ1 − 3ζ2

s.t. x1 + 2x2 = 10

2x1 + 2x2 + ξ1 + 2ξ2 + ζ1 + 2ζ2 = 22

2x1 + 4x2 − ξ1 − 2ξ2 + ζ1 + 2ζ2 = 26

2x1 + x2 = 8

2x1 + 2x2 + 2ξ1 + ξ2 + 2ζ1 + ζ2 = 20

4x1 + 2x2 − 2ξ1 − ξ2 + 2ζ1 + ζ2 = 22

x1, x2, ξ1, ξ2, ζ1, ζ2 ≥ 0

x1 − 2ζ1 ≥ 0, x1 + 2ζ1 ≥ 0, x1 + 2ξ2 ≥ 0

x2 − 3ζ2 ≥ 0, x2 + 3ζ2 ≥ 0, x2 + 3ξ2 ≥ 0.

(8)

Using the weighting method, the problem (8) becomes

minE = 0.5f1 + 0.2f2 + 0.3f3 = 1.8x1 + 2.9x2 + 0.2ξ1 + 0.3ξ2 − ζ1 − 1.5ζ2

s.t. x1 + 2x2 = 10

2x1 + 2x2 + ξ1 + 2ξ2 + ζ1 + 2ζ2 = 22

2x1 + 4x2 − ξ1 − 2ξ2 + ζ1 + 2ζ2 = 26

2x1 + x2 = 8

2x1 + 2x2 + 2ξ1 + ξ2 + 2ζ1 + ζ2 = 20

4x1 + 2x2 − 2ξ1 − ξ2 + 2ζ1 + ζ2 = 22

x1, x2, ξ1, ξ2, ζ1, ζ2 ≥ 0

x1 − 2ζ1 ≥ 0, x1 + 2ζ1 ≥ 0, x1 + 2ξ2 ≥ 0

x2 − 3ζ2 ≥ 0, x2 + 3ζ2 ≥ 0, x2 + 3ξ2 ≥ 0.

(9)

Using GAMS Software, the solution of FFLP problem (7) and thus the solution of problem
(9) is given in Table 1.

Fuzzy optimal solution Fuzzy optimum value

x̃∗1 = (2, 0, 2)LR Z̃∗ = (16, 9, 19)LR

x̃∗2 = (4, 1, 3)LR E = 15

Table 1: The fuzzy solution of the FFLP problem
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6. Conclusions

In this paper, an approach for obtaining fuzzy optimal solution for FFLP has introduced. The
proposed approach based on converting the FFPL problem into triple objective function and
hence single objective using the weighting method. The advantage of this approach is more
flexible, realistic to the real world problem, useful for the future study and can be extended in
generalized fuzzy numbers.
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