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1. Introduction 

The objective of this research is to employ high-fre-
quency data in determining the forecasting power 
of option pricing models. High-frequency data are 
used here to provide a reference probability density 
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Abstract

Purpose: Recently, considerable attention has been given to forecasting, not only the mean and the vari-
ance, but also the entire probability density function (pdf) of the underlying asset. These forecasts can 
be obtained as implied moments of future distribution originating from European call and put options. 
However, the predictive accuracy of option pricing models is not so well established. With this in mind, 
this research aims to identify the model that predicts the entire pdf most accurately when compared to the 
ex-post “true” density given by high-frequency data at expiration date. 

Methodology: The methodological part includes two steps. In the first step, several probability density 
functions are estimated using different option pricing models, considering the values of major market in-
dices with different maturities. These implied probability density functions are risk neutral. In the second 
step, the implied pdfs are compared against the “true” density obtained from the high-frequency data to 
examine which one gives the best fit out-of-sample. 

Results: The results support the idea that a “true” density function, although unknown, can be estimated by 
employing the kernel estimator within high-frequency data and adjusted for risk preferences. 

Conclusion: The main conclusion is that the Shimko model outperforms the Mixture Log-Normal model 
as well as the Edgeworth expansion model in terms of out-of-sample forecasting accuracy. This study con-
tributes to the existing body of research by: i) establishing the benchmark of the “true” density function 
using high-frequency data, ii) determining the predictive accuracy of the option pricing models and iii) 
providing applicative results both for market participants and public authorities. 

Keywords: Option pricing models, high-frequency data, kernel estimation, benchmark density function, 
predictive accuracy
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function that would be a benchmark for compari-
son purpose. The usage of high-frequency data has 
been driven by technological advances in trading 
systems, allowing for the recording of almost every 
transaction that has been realized. The dominance 
of multilateral trading and electronic trading in reg-
ulated markets is growing due to the development 
of algorithms, the increase in the dynamics of plac-
ing orders and liquidity. All the above-mentioned 
factors provide record-breaking market activity 
at high frequency, leading to more information of 
high quality. The academic and practical interest 
in intraday data, observed at very short intervals of 
time, are market structures and trading processes 
that are subject to constant change. The inclusion 
of electronic trading platforms has automated and 
accelerated the execution of transactions as well as 
trading reporting, and has enabled investors to au-
tomate their strategies and manage orders in real 
time. The main purpose of this research is fore-
casting the future expectation, variance and higher 
moments of financial assets. In addition to high-
frequency data observed every minute, the put and 
call options data on the stock market indices CAC 
(Cotation Assistée en Continu), AEX (Amsterdam 
Exchange index), MIB (Milano Indice di Borsa), and 
DAX (Deutscher Aktienindex) are considered in this 
study. The data were obtained from the Thomson 
Reuters financial service. The research is conducted 
in two phases. The first phase includes estimating 
the implied probability density functions at the ex-
piration date using options data. The second phase 
involves comparing the estimated probability den-
sity functions against the reference density function 
based on high-frequency data, obtained by the ker-
nel estimation method. Employing this estimation 
method on observed high-frequency data in real 
time provides an applicative contribution and thus 
a great advantage over other studies, which mostly 
rely on simulation data. The used models, i.e. the 
Shimko model, the Mixture Log-Normal model and 
the Edgeworth expansion model, are from a class of 
non-parametric, parametric and semi-parametric 
option pricing models, respectively. The main ob-
jective of the research is to evaluate the predictive 
accuracy of the mentioned models and to select 
the most appropriate one that not only best fits the 
data but also has the highest predictive accuracy. 
There are some issues regarding the high-frequency 
data, such as financial market illiquidity, and thus 
lack of data and uncertainty about sampling fre-
quency selection since time intervals are required 
to be equidistant and non-overlapping. Comparing 
the reference probability density function with an 

estimated risk neutral density function results in 
recommendations not only for academics, but also 
practitioners, particularly for financial analysts and 
market participants, as it provides them with ad-
ditional information on risk preferences.

2. Literature review

It is already documented in the previous studies 
that current prices of financial instruments reflect 
information about future expectations and other 
moments (Bouden, 2007). Option prices give an 
insight into the expected value of the underlying as-
set under the assumption of risk neutrality, which 
makes option prices suitable for estimating the im-
plied probability density function (Čuljak, 2019). 
Syrdal (2002) presents the first application of risk 
neutral probability density function on Norwegian 
option market. Sun (2013) explores application on 
SP 500 index options, whereas Santos (2011), Bliss 
and Panigirtzoglou (2002) and Šestanović et al. 
(2018) study a risk neutral probability density func-
tion on European options data. For market partici-
pants, the appeal of using the implied probability 
density function lies in the ability to estimate prob-
abilities in a series of future events, using market 
perceptions over a period of time. Market analysts 
and decision makers use this source of informa-
tion to analyze market sentiment, uncertainty and 
extreme events, which are commonly embedded 
in interest rates and exchange rates (Bauwens et 
al., 2008). It has been shown that a set of call and 
put option prices with the same maturity, but dif-
ferent strike prices, can be used to extract the entire 
probability distribution of the underlying asset at 
the expiration date (Banz & Miller, 1978; Breeden 
& Litzenberger, 1978). Previous studies have used 
different approaches, i.e. different option pricing 
models (Bouden, 2007; Liu et al., 2007; Lai, 2014). 
Despite being the best known and commonly 
used, the Black and Scholes model assumes that a 
log-normal distribution is not always applicable in 
practice. To address this issue, different methods 
have been proposed to extract risk-neutral density 
(RND) functions and to examine their robustness 
and forecasting power (Santos & Guerra, 2015). 
Therefore, it is necessary to investigate more closely 
other models that can be applied in practice. Ac-
cording to Jondeau et al. (2007), alternative option 
pricing models can be divided into two categories: 
structural and non-structural. Structural models 
assume specific price and/or volatility dynamics, 
while non-structural models allow the estimation 
of RND without assumptions about the price or 
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volatility of the underlying asset (Šestanović et al., 
2018). Non-structural models are divided into three 
categories: parametric, semi-parametric and non-
parametric models, which have been considered in 
this paper also. Parametric models assume the form 
of a risk-neutral probability density function with-
out prior assumptions about the underlying asset 
price dynamics (Čuljak, 2019). From the mentioned 
studies, it can be easily concluded which model is 
the best fit in-the-sample, but it cannot be generally 
concluded which model predicts most accurately. 
An assessment of predictive accuracy requires that 
the probability density function of the underlying 
asset is known. Since it is unknown, as are the re-
lated moments of the process that generates price 
dynamics, any attempt of comparison against the 
assumed data generating process via simulation 
leaves many doubts and issues. However, as time 
passes, we can observe what has happened at expi-
ration date by taking high frequencies, i.e. intraday 
observations at given maturity. This is exactly what 
this paper deals with.

3. Implied risk neutral density estimation

This section presents three option pricing models 
employed in this paper: the Mixture Log-Normal 
model (MLN), the Edgeworth expansion model 
(EE) and the Shimko model (SM). It also provides 
an overview of option pricing that reduces the limi-
tations of the Black and Scholes model. The Mixture 
Log-Normal model is a parametric one. According 
to Bahra (1997), using the combination of two log-
normal distributions, the expressions for the Euro-
pean call and put option price are obtained:
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Using (5) it is easy to calculate implied mean, vari-
ance, skewness ΥQ,1  and kurtosis ΥQ,2. Expression 
for implied risk neutral density function is obtained 
by differentiating twice (5) with respect to the X and 
evaluating over ST as follows:
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where partial derivations are iteratively calculated.  

Non-parametric models do not assume the form of a risk-neutral probability density function. 

The last model used in this study is the Shimko model, which is a non-parametric model. The 

idea is primarily to gather all the information on the volatility curve by the polynomial ����, the 

exercise price �� and then to use the Breeden-Litzenberger expression to estimate the probability 

density function (Breeden & Litzenberger, 1978; Jondeau et al., 2007; Shimko, 1993). The 

following expression for the European call option price is used: 
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Floros, 2015; Florescu et al., 2016; Hautsch, 2012). Long memory refers to the decay rate of the 

statistical dependence of two points with an increase in the time interval, i.e. the linear 

dependence between two shifted data points decreases very slowly. 

Microstructure noise property is a term for a phenomenon observed in high-frequency data that 

refers to the deviation of the observed price from the base price. The presence of the 

microstructure noise makes estimates of some parameters biased. It can be the result of various 

factors such as bid-ask differences, information asymmetries, price changes discreetness and 

order latency. 
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the polynomial σ(X), the exercise price X, and then 
to use the Breeden-Litzenberger expression to es-
timate the probability density function (Breeden & 
Litzenberger, 1978; Jondeau et al., 2007; Shimko, 
1993). The following expression for the European 
call option price is used:
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4. Kernel density estimation using high-
frequency data

High-frequency data have some unique proper-
ties, which makes them challenging to deal with 
for practitioners as well as academics. One of the 
main features is that high-frequency data are not 
observed continuously, but rather discretely within 
not equally distant time points or an interval of 
time. High-frequency data are mostly nonnegative, 
positively autocorrelated with significant intraday 
periodicity and long memory and microstructure 
noise (Degiannakis & Floros, 2015; Florescu et al., 
2016; Hautsch, 2012). Long memory refers to the 
decay rate of the statistical dependence of two 
points with an increase in the time interval, i.e. the 
linear dependence between two shifted data points 
decreases very slowly.
Microstructure noise property is a term for a phe-
nomenon observed in high-frequency data that 
refers to the deviation of the observed price from 
the base price. The presence of the microstructure 
noise makes estimates of some parameters biased. 

It can be the result of various factors such as bid-ask 
differences, information asymmetries, price chang-
es discreetness and order latency.
High-frequency data are also characterized by 
non-normality, i.e. they show the property of fat-
tails. Many option pricing models, such as Black 
and Scholes, assume normality. However, in prac-
tice, it has been shown that unpredictable hu-
man behavior leads to extreme events and thus 
non-normality. Abovementioned features make 
determining an appropriate distribution complex. 
However, finding a true but unknown daily distri-
bution based on intraday prices becomes possible 
using the kernel density estimation method. It 
should be emphasized that the “true” probability 
density function can be obtained for each matu-
rity date and then compared with ex-ante den-
sity functions derived from several option pricing 
models. Thus, we compare implied risk-neutral 
probability density functions and the estimated 
probability density functions as benchmarks of 
the “true” densities. Prior to the analysis, the raw 
data are cleaned as follows. It is assumed that, at 
each exercise price, call and put options are avail-
able in pairs. Cleaning is done by taking a sample 
that satisfies more criteria than required by the bid 
price and assuming it is greater than zero. There-
fore, there is usually a big difference between the 
available call and put options prices and the ones 
actually used. If there are less than ten exercise 
prices for which we have call and put options, then 
the probability density function will not be esti-
mated by any of the models used in this paper. The 
observed stock indices are CAC, AEX, MIB and 
DAX, i.e. the French, Dutch, Italian and German 
market index, respectively. Financial instruments 
used are call and put options on the major indices 
of the listed financial markets on combinations of 
options trading dates and options expiration dates 
in 2018 (Table 1). 

Table 1 Options trading dates and expiration dates with respect to four stock market indices

Year 2018 Options expiration dates

Options trading dates July 20 August 17 September 21

March 23 AEX, DAX, MIB

April 20 AEX, CAC

May 18 DAX AEX, CAC, DAX, MIB

June 22 AEX, CAC, DAX, MIB AEX, DAX AEX, DAX

Source: Thomson Reuters
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It can be noticed from Table 1 that options data are 
not available for all market indices at given trading 
dates. For example, on trading date May 18, 2018 
options data are available for all four indices AEX, 
CAC, DAX and MIB with expiration on Septem-
ber 21, 2018 (maturity horizon approximately 4 
months), but only for DAX index with expiration 
on July 20, 2018 (maturity horizon one month). 
Further, we estimate the implied probability den-
sity functions on the expiration dates of the Shimko 
model, Mixture Log-Normal model, and Edge-
worth expansion. In addition to options data, high-
frequency data were obtained from the Thomas 
Reuters database for the same expiration dates for 
which the kernel density method is used to estimate 
the “true” probability density functions.

4.1 Kernel estimation of probability density function

Probability density function 

expiration dates of the Shimko model, Mixture Log-Normal model, and Edgeworth expansion. In 

addition to options data, high-frequency data were obtained from the Thomas Reuters database 

for the same expiration dates for which the kernel density method is used to estimate the “true” 

probability density functions. 

  

4.1 Kernel estimation of probability density function 

Probability density function ���� of a random sample ��� � � �� is usually unknown and should 

be estimated ex-post. The most well-known assumption free method is the kernel estimation: 
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where the kernel function K (x) is a symmetric and unimodal probability density function and β 

is the bandwidth. Bandwidth controls the smoothness of the probability density function and 

affects considerably the graphical presentation of the estimate itself regarding the skewness and 

kurtosis. The most commonly used kernel functions are: uniform, Epanechnikov and Gaussian. 

In our research we use a Gaussian kernel function, i.e. K(x) = φ (x), where φ is the standard 

normal probability density function. The choice of the kernel function has no significant effect 

on the final density estimation, i.e. studies have shown that the choice of the kernel function does 

not affect the outcome, while it is more sensitive to the bandwidth (Rosenberg & Engle, 2002; 

Arnerić, 2020). The kernel estimator is intuitively very similar to the histogram methodology. 

Specifically, it primarily estimates the probability density function at each data point, and then 

sums all these densities to produce a final estimate. Comparing the obtained curve estimate with 

the histogram (using the same data) would threaten the obvious difference in the histogram 

smoothness and the kernel estimate as the kernel estimator converges faster to the true 

probability density function. 

 

4.2 Bandwidth selection 
Choosing an appropriate kernel bandwidth β is crucial in estimating the probability density 

function f(x). Many studies recommend some rule of thumbs but also arbitrary selection of β 

(Chiu, 1996). This paper employs kernel bandwidth for each expiration date separately. 

Although non-parametric kernel estimation is now a standard technique in exploratory data 

analysis, there is still a great deal of controversy about how to evaluate the validity of an estimate 

and which kernel bandwidth is optimal. The main point of disagreement is whether to use 
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where the kernel function K (x) is a symmetric and 
unimodal probability density function and β is the 
bandwidth. Bandwidth controls the smoothness of 
the probability density function and affects consid-
erably the graphical presentation of the estimate it-
self regarding the skewness and kurtosis. The most 
commonly used kernel functions are: uniform, 
Epanechnikov and Gaussian. In our research we use 
a Gaussian kernel function, i.e. K(x) = φ (x), where φ 
is the standard normal probability density function. 
The choice of the kernel function has no significant 
effect on the final density estimation, i.e. studies 
have shown that the choice of the kernel function 
does not affect the outcome, while it is more sen-
sitive to the bandwidth (Rosenberg & Engle, 2002; 
Arnerić, 2020). The kernel estimator is intuitively 
very similar to the histogram methodology. Specifi-
cally, it primarily estimates the probability density 
function at each data point, and then sums all these 
densities to produce a final estimate. Comparing 
the obtained curve estimate with the histogram (us-
ing the same data) would threaten the obvious dif-
ference in the histogram smoothness and the kernel 
estimate as the kernel estimator converges faster to 
the true probability density function.

4.2 Bandwidth selection

Choosing an appropriate kernel bandwidth β is cru-
cial in estimating the probability density function 
f(x). Many studies recommend some rule of thumbs 
but also arbitrary selection of β (Chiu, 1996). This 
paper employs kernel bandwidth for each expira-
tion date separately. Although non-parametric 
kernel estimation is now a standard technique in 
exploratory data analysis, there is still a great deal 
of controversy about how to evaluate the validity 
of an estimate and which kernel bandwidth is op-
timal. The main point of disagreement is whether 
to use integrated squared error or mean integrated 
squared error for selecting the optimal bandwidth. 
However, in this research the kernel bandwidth pa-
rameter is adjusted to obtain the best fit with re-
spect to the high-frequency data for each expiration 
date under consideration.

5. Research results

This section provides the results of comparison 
between estimated probability density functions, 
obtained by the three option pricing models, and 
benchmarks of the “true” probability density func-
tions obtained by kernel estimation using high-fre-
quency data. A graphical and analytical compari-
son is presented for each maturity date. The study 
that is most similar to our research compares three 
parametric density functions obtained by a mixture 
of two log-normal (MLN), Black-Scholes-Merton 
(BSM) and generalized beta (GB2) according to 
Arnerić et al. (2015). Mean square error (MSE) and 
absolute relative error (ARE) were used for pairwise 
comparison purpose only, neglecting the “true” 
probability density function that can be observed 
ex-post. The Diebold-Mariano test (DM) is used 
to test which model has a lower MSE (Diebold et 
al., 1998). The abovementioned parametric models 
are usually overfitted, creating a wrong impression 
as to how these models fit the data. Due to unique 
characteristics of the proposed models, we consid-
er them to be sensitive to different maturity dates. 
Given that semi-parametric and non-parametric 
approaches do not explicitly form the risk-neutral 
probability density function and there is no as-
sumption about the function itself, this paper fo-
cuses on Shimko model (SM), Mixture Log-Normal 
model (MLN) and Edgeworth expansion model 
(EE). In our paper, we implement out-of-sample 
comparison methods and determine their predic-
tive accuracy. Two tests were used here, the Die-
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bold-Mariano test and the Kolmogorov-Smirnov 
test (Pauše, 1993). The results are provided for all 
combinations of selected trading and expiration 
dates. For the prices of call and put options the mid-
points between bid and ask prices are taken. EURI-
BOR is taken as a risk-free interest rate, depending 
on the forecast horizon. The forecast horizon var-
ies from one month to six months (Table 1). It was 
assumed that there were no dividend payments. 
Data processing was done in the “R Studio”. The 
results for the AEX, CAC, DAX and MIB indices 
are presented graphically from Figure 1 to Figure 
18 (see Appendix). The figures present a graphical 
comparison of implied probability density func-

tions using three different option pricing models 
(MLN, EE, SM) and kernel estimated probability 
density function based on high-frequency data, i.e. 
the “true” density (TD). From these figures it can be 
observed that the kernel density estimation is accu-
rate enough to be used as a benchmark for compar-
ative purpose out-of-sample, and that the Shimko 
model generally fits the “true” density the best. This 
result is of great interest for investment industry as 
it informs analysts which option pricing model to 
use when assessing the market expectations. Table 
2 presents the comparison results obtained by the 
two-sided Kolmogorov-Smirnov test and the Die-
bold-Mariano test.

Table 2 Comparison results from the Kolmogorov-Smirnov test and Diebold-Mariano test

Index / Expiration date / 
Trading date

Kolmogorov-Smirnov test Diebold-Mariano test

TD-MLN TD-SM TD-EE TD-MLN TD-SM TD-EE

AEX

August 17, 2018

June 22, 2018

0.26

(p<0.05)

0.54

(p<0.05)

0.67

(p<0.05)

-8.85

(p<0.05)

-7.51

(p<0.05)

-6.85

(p<0.05)

July 20, 2018

June 22, 2018

0.41

(p<0.05)

0.52

(p<0.05)

0.59

(p<0.05)

2.23

(p<0.05)

0.85

(p>0.05)

-2.21

(p<0.05)

September 21, 2018

March 23, 2018

0.38

(p<0.05)

0.61

(p<0.05)

0.72

(p<0.05)

-6.75

(p<0.05)

-7.81

(p<0.05)

-1.32

(p<0.05)

September 21, 2018

April 20, 2108

0.42

(p<0.05)

0.65

(p<0.05)

0.75

(p<0.05)

-5.74

(p<0.05)

-7.34

(p<0.05)

-4.24

(p<0.05)

September 21, 2018

May 18, 2018

0.37

(p<0.05)

0.59

(p<0.05)

0.65

(p<0.05)

-7.24

(p<0.05)

-8.21

(p<0.05)

-6.99

(p<0.05)

September 21, 2018

June 22, 2018

0.36

(p<0.05)

0.51

(p<0.05)

0.6

(p<0.05)

-5.41

(p<0.05)

-7.96

(p<0.05)

-7.38

(p<0.05)

CAC

July 20, 2018

June 22, 2018

0.53

(p<0.05)

0.80

(p<0.05)

0.38

(p<0.05)

-4.06

(p<0.05)

-7.55

(p<0.05)

-0.87

(p<0.05)

September 21, 2018

April 20, 2018

0.54

(p<0.05)

0.47

(p<0.05)

0.54

(p<0.05)

-7.04

(p<0.05)

-8.62

(p<0.05)

-5.41

(p<0.05)

September 21, 2018

May 18, 2018

0.31

(p<0.05)

0.35

(p<0.05)

0.53

(p<0.05)

-7.99

(p<0.05)

-9.82

(p<0.05)

-8.58

(p<0.05)

August 17, 2018

June 22, 2018

0.35

(p<0.05)

0.47

(p<0.05)

0.53

(p<0.05)

-18.06

(p<0.05)

-10.94

(p<0.05)

-7.00

(p<0.05)
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Index / Expiration date / 
Trading date

Kolmogorov-Smirnov test Diebold-Mariano test

TD-MLN TD-SM TD-EE TD-MLN TD-SM TD-EE

DAX

July 20, 2018

May 18, 2018

0.37

(p<0.05)

0.55

(p<0.05)

0.38

(p<0.05)

-5.85

(p<0.05)

-1.45

(p>0.05)

-5.68

(p<0.05)

July 20, 2018

June 22, 2018

0.31

(p<0.05)

0.46

(p<0.05)

0.49

(p<0.05)

1.94

(p>0.05)

1.34

(p>0.05)

-0.76

(p<0.05)

September 21, 2018

March 23, 2018

0.34

(p<0.05)

0.15

(p<0.05)

0.13

(p>0.05)

0.34

(p>0.05)

-5.18

(p<0.05)

-7.70

(p<0.05)

September 21, 2018

May 18, 2018

0.30

(p<0.05)

0.31

(p<0.05)

0.35

(p<0.05)

6.45

(p<0.05)

3.10

(p<0.05)

-2.64

(p<0.05)

September 21, 2018

June 22, 2018

0.36

(p<0.05)

0.35

(p<0.05)

0.43

(p<0.05)

-4.35

(p<0.05)

-3.02

(p<0.05)

-2.64

(p<0.05)

MIB

July 20, 2018

June 22, 2018

0.22

(p<0.05)

0.31

(p<0.05)

0.29

(p<0.05)

1.35

(p>0.05)

-9.73

(p<0.05)

-6.34

(p<0.05)

September 21, 2018

March 23, 2018

0.34

(p<0.05)

0.27

(p<0.05)

0.20

(p<0.05)

-2.50

(p<0.05)

-6.54

(p<0.05)

-6.91

(p<0.05)

September 21, 2018

May 18, 2018

0.38

(p<0.05)

0.35

(p<0.05)

0.28

(p<0.05)

-6.56

(p<0.05)

-7.84

(p<0.05)

-3.65

(p<0.05)

Source: Authors’ calculation using R Studio and Thomson Reuters data

In most of the cases, we reject the null hypothesis 
of the Kolmogorov-Smirnov test proposing that 
the estimated probability densities originate from 
the “true” density function. The null hypothesis is 
rejected at a significance level of 5% in most cases 
except from DAX index on trading date of March 
23, 2018 and maturity date of September 21, 2018. 
In that case we did not reject the null hypothesis of 
KS test at a significance level of 5% (p>0.05). This 
means that the probability density function implied 
by the Shimko model and the “true” density func-
tion obtained by the Kernel estimator are the same. 

Table 2 also provides aggregate DM test results for 
all observed stock indices and combinations of ma-
turity and trading dates. DM is used to test the null 
hypothesis for the observed pricing models having 
the same forecasting ability. In the example of AEX 
stock index on maturity date August 17, 2018 and 
trading date June 22, 2018, the null hypothesis at 
a significance level of 5% was rejected. In an equal 
number of cases, the Mixture Log-Normal model, 

the Shimko model, and the Edgeworth expansion 
model have been shown to have the same prognos-
tic accuracy i.e. we did not reject the null hypoth-
esis at a significance level of 5%. It is important to 
emphasize that in the case of DAX market index 
on the trading date of June 22, 2018 and expiration 
date July 20, 2018 all the models had the same prog-
nostic accuracy.

6. Conclusion

Probability density function can be estimated us-
ing high-frequency data by employing Kernel esti-
mator. Estimated probability density is sufficiently 
close to the “true” density and thus can be used as 
a benchmark or a reference function in determin-
ing the predictive accuracy of three option pricing 
models considered. Finding a benchmark for com-
parison purpose out-of-sample is the main contri-
bution of this research, i.e. for each expiration date 
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and every stock market index, appropriate bench-
mark was found with respect to Kernel bandwidth.

From the perspective that Kernel estimator pro-
vides referential probability density function, it can 
be concluded that Shimko model is the best fitting 
model out-of-sample when compared against the 
“true” density. Moreover, the null hypothesis of 
the Kolmogorov-Smirnov test was rejected in most 
cases for all market indices and all combinations of 
trading and expiration dates. The results of the Die-
bold-Mariano test did not reject the null hypothesis 
implying that the models have the same predictive 
accuracy. According to the graphical presentations 
and the Kolmogorov-Smirnov test, we can conclude 
that the Shimko model predicts most accurately. 
Comparing a benchmark density function with an 
estimated risk-neutral density function has shown 
solid results that provide recommendations for ap-
plication in academic research as well as in the fi-
nancial industry. These results can be very helpful 
for further research into volatility estimation using 
high-frequency data. Concerning the application of 
the expected results, it will be possible to observe 

certain characteristics within the development of 
predictive methods and their optimization. The 
paper provides analysts and investors in fintech ar-
eas with recommendations with regard to forecast-
ing methodology and the reference financial series 
for monitoring future developments on the capital 
markets.
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Figure 1 Comparison of risk-neutral densities 
obtained on June 22, 2018 for AEX index against 
the true density of AEX index with a maturity 
date of August 17, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 2 Comparison of risk-neutral densities 
obtained on June 22, 2018 for AEX index against 
the true density of AEX index with a maturity 
date of July 20, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 3 Comparison of risk-neutral densities ob-
tained on March 23, 2018 for AEX index against 
the true density of AEX index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 4 Comparison of risk-neutral densities 
obtained on April 20, 2018 for AEX index against 
the true density of AEX index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Appendix
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Figure 8 Comparison of risk-neutral densities ob-
tained on April 20, 2018 for CAC index against 
the true density of CAC index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 9 Comparison of risk-neutral densities 
obtained on May 18, 2018 for CAC index against 
the true density of CAC index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 10 Comparison of risk-neutral densities 
obtained on June 22, 2018 for DAX index against 
the true density of DAX index with a maturity 
date of August 17, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 5 Comparison of risk-neutral densities 
obtained on May 18, 2018 for AEX index against 
the true density of AEX index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 6 Comparison of risk-neutral densities 
obtained on June 22, 2018 for AEX index against 
the true density of AEX index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 7 Comparison of risk-neutral densities ob-
tained on June 22, 2018 for CAC index against 
the true density of CAC index with a maturity 
date of July 20, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data
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Figure 14 Comparison of risk-neutral densities 
obtained on May 18, 2018 for DAX index against 
the true density of DAX index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 15 Comparison of risk-neutral densities 
obtained on June 22, 2018 for DAX index against 
the true density of DAX index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 16 Comparison of risk-neutral densities 
obtained on June 22, 2018 for MIB index against 
the true density of MIB index with a maturity 
date of July 20, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 11 Comparison of risk-neutral densities 
obtained on May 18, 2018 for DAX index against 
the true density of DAX index with a maturity 
date of July 20, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 12 Comparison of risk-neutral densities 
obtained on June 22, 2018 for DAX index against 
the true density of DAX index with a maturity 
date of July 20, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 13 Comparison of risk-neutral densi-
ties obtained on March 23, 2018 for DAX index 
against the true density of DAX index with a ma-
turity date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data



Arnerić, J. et al.: Predictive accuracy of option pricing models considering high-frequency data

144 Vol. 34, No. 1 (2021), pp. 131-144

Figure 18 Comparison of risk-neutral densities 
obtained on May 18, 2018 for MIB index against 
the true density of MIB index with a maturity 
date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data

Figure 17 Comparison of risk-neutral densi-
ties obtained on March 23, 2018 for MIB index 
against the true density of MIB index with a ma-
turity date of September 21, 2018

Source: Authors’ calculation using R Studio and Thomson 
Reuters data




