International License

THE RELATIONSHIP BETWEEN ENERGY SECURITY AND MILITARY EXPENDITURES: A BOOTSTRAP PANEL GRANGER CAUSALITY ANALYSIS FOR ENERGY EXPORTER COUNTRIES

Abstract

Purpose: The aim of this study is to analyze the causality relationship between military expenditures and energy security risk levels. In this context, the main purpose of the study is to investigate whether military expenditures have a role in ensuring energy security and to perform a pioneering study examining the relationship between energy security and military expenditures. In addition, the variables of economic growth and energy export revenues are also included in empirical analysis.

Methodology: The Kónya (2006) bootstrap panel Granger causality approach is used in empirical analysis. The analysis covers 16 major energy exporter countries and the years 1990 and 2018. Results: It was found that there is one-directional causality from military expenditures to energy security risk levels for three countries, and from energy security risk levels to military expenditures for two countries. On the other hand, it was determined that there is one-directional causality from energy security risk levels to economic growth for four countries, from economic growth to energy security risk levels for two countries, from energy security risk level to energy export revenues for four countries, and from energy export revenues to energy security risk levels for one country. Moreover, it was determined that there is bidirectional causality between energy security risk levels and economic growth for four countries, and between energy security risk levels and energy export revenues for two countries. Conclusion: The results obtained in this study demonstrate that the causality relationship between energy security and other variables (military expenditures, GDP, and energy export income) cannot be generalized across countries. However, it may be argued that energy security is an important policy tool that has important economic consequences for energy-exporting countries through its effects on different variables.

Keywords: Energy security, military expenditures, economic growth, energy export revenues, bootstrap panel Granger causality

1. Introduction

According to SIPRI (2021), global military expenditures are approximately $\$ 1.8$ trillion 1 as of 2018. The majority of the global military expenditures have been carried out by the USA with approximately 682.5 billion dollars. The share of the USA in total military expenditure alone is 37.7%, and it is followed by China with 14% and Saudi Arabia with 4.01%. The total share of the top 10 countries in global military expenditures is 76%. Globally, military expenditures increased by approximately 1.94 times compared to 1990. In this period, the military expenditures of the USA increased approximately two times, whereas the military expenditures of China increased approximately 25 times. Accordingly, there is a globally unbalanced distribution of military expenditures.

It is quite remarkable that China's share in global military expenditures was approximately 1% in 1990, while it increased to 14% in 2018. A huge increase in military expenditures in parallel with China's enormous economic growth can be argued as proof that economic growth in China has increased military expenditures. Threats from other global powers that are dissatisfied with China becoming a global power (in a sense, an increase in enemies due to global competition) may have triggered military expenditures by increasing national security risks for China. As a third option, China's desire to have access to global resources as it needs more resources for sustained economic growth as well as to expand to influence the world as a global power in the military sense may have prompted military expenditures. Accordingly, it can be suggested that all these options are partially valid for China.
The main reason for military expenditures is to secure the fundamental rights and freedoms of citizens living within the borders of the country, especially security of life and property. At the same time, as in the case of China, there are many different reasons why countries increase their military expenditures. In this regard, the reasons for increasing military expenditures are e.g. population growth, expanding borders, the possibility of allocating a larger budget to military expenditures thanks to economic growth, increased security risks to natural resources in natural resource-rich countries, increasing global and regional security risks, global power competition, and providing access to global
resources to ensure the continuity of economic growth. On the other hand, military expenditures may affect economic growth in two ways. Firstly, in a broadly Keynesian framework, it may stimulate the growth process through increased use of capital stock. In this way, employment, profits, and investment may be stimulated. Secondly, military expenditures may harm economic growth by crowding out investment as well as civilian budget expenditures including health and infrastructure expenditures (Topcu \& Aras, 2015, p. 233)
Revenues from energy exports have a large share in the economies of energy exporter countries. In this respect, when analyzing Table 1 for the 16 major energy exporter countries, it is shown that the share of energy export revenues in GDP is above 10% in 10 of these countries. In addition, the panel average is 11.4%. Taking into account the share of export revenues from energy exports in total exports, it is shown that the share of energy exports in total exports is over 10% in all countries - in fact, this rate is over 80% in some countries. Moreover, the panel average is 37.46%. In these countries, it can be expected that fluctuations in energy revenues affect many economic variables, especially export revenues and GDP. Therefore, if diversity of export products cannot be achieved in these countries, it is necessary to ensure the continuity of revenues from energy exports.

At this point, the issue of energy security gains importance. According to the International Energy Agency (IEA) (2020), energy security is "the uninterrupted availability of energy sources at an affordable price". However, energy security is expressed with the 4As of energy security, i.e., availability, affordability, accessibility, and acceptability (Kartal, 2022b, pp. 224-225). In this direction, the IEA definition of energy security can be expanded as "the uninterrupted availability of energy sources that are acceptable with their environmental effects at an affordable price". Here, the most important element of energy security for energy exporter countries is the security of energy resources and export routes. Moreover, having rich energy resources is a source of global power, and on the other hand, it is also a source of conflict in international competition. For this reason, it may be argued that it is necessary to increase military expenditures both to ensure energy security and to deter countries that have ambitions in relation to their resources.

[^0]In addition, it can be expected that an increase in energy export revenues maybe allows more resources to be allocated to military expenditures by increasing the state budget revenue. Moreover, given that military expenditures can also provide safer opportunities for energy export (i.e., increase the level of energy security), it can also be argued that
increased military expenditures may contribute to export revenues and thus to the economic growth process. In this direction, this study focuses on the causality relationship among military expenditures and economic growth, energy export revenues, and energy security risk level for 16 important energy exporter countries.

Table 1 Share of energy exports in GDP and total exports in energy exporter countries

C.N	Country	Energy Exports (\%GDP)			Energy Exports (\%Exports)				
		$\mathbf{1 9 9 0}$	Rank	$\mathbf{2 0 1 8}$	Rank	$\mathbf{1 9 9 0}$	Rank	$\mathbf{2 0 1 8}$	Rank
1	Algeria	16.84	6	23.11	4	71.83	6	89.60	2
2	Australia	2.40	14	4.07	15	15.88	14	18.65	13
3	Bahrain	72.29	1	18.39	5	62.56	7	23.11	11
4	Canada	2.14	15	5.81	13	8.49	15	18.11	14
5	Colombia	4.19	13	7.26	12	22.22	12	45.69	8
6	Ecuador	9.71	12	8.19	11	42.65	9	36.22	10
7	Indonesia	10.59	10	4.03	16	38.78	10	19.22	12
8	Iran	11.71	9	14.62	9	88.19	3	43.99	9
9	Kuwait	42.72	3	46.49	1	95.07	1	81.97	4
10	Malaysia	12.26	8	10.74	10	16.46	13	15.66	15
11	Nigeria	15.96	7	14.79	8	76.10	4	95.41	1
12	Norway	10.05	11	17.61	6	25.49	11	45.80	7
13	Oman	43.28	2	36.30	2	91.63	2	62.52	6
14	Paraguay	0.01	16	5.22	14	0.03	16	14.54	16
15	S. Arabia	29.11	4	29.44	3	72.17	5	73.54	5
16	Venezuela	20.19	5	17.34	7	52.89	8	86.79	3
	Panel Average	$\mathbf{8 . 6 7}$	-	$\mathbf{1 1 . 4 1}$	-	$\mathbf{3 2 . 5 9}$	-	$\mathbf{3 7 . 4 6}$	-

Source: World Bank (2021); UN (2021a); Trademap (2021); Enerdata (2021)

The change in the share of military expenditures in GDP over time in the 16 major energy exporter countries and worldwide is shown in Figure 1. Accordingly, it is clearly seen that the share of military expenditures in GDP in energy-exporting countries
is generally above the world average, except for a few years. This situation suggests that the need for military expenditures is relatively higher in energy exporter countries.

Figure 1 Share of military expenditures in GDP

Note: While calculating the averages, the countries with data for the relevant period were considered.
Source: SIPRI (2021)

Some statistical data regarding the energy exporter countries included in this study are given in Table 2. According to the information obtained from the table, it can be seen that, compared to 1990, mili-
tary expenditures increased in all countries except for Iran, Kuwait, and Venezuela. It can be seen that military expenditures in these countries increased approximately 12.6 times in Ecuador, 11.4 times
in Colombia, and 10.6 times in Algeria. Moreover, while the total military expenditures of energy exporter countries increased approximately 2.7 times,
total global military expenditures increased 1.9 times in this period.

Table 2 Military expenditures in energy-exporting countries

C.N	Country	Military Expenditure			Military		Military		Energy Security Risk Levels		
		1990	2018	Change*	1990	2018	1990	2018	1990	2018	\%Change
1	Algeria	904	9,584	10.6	1.46	5.46	8.65	23.65	891.03	1,251.19	40.42
2	Australia	6,704	26,840	4.0	2.16	1.87	89.71	46.03	716.70	805.29	12.36
3	Bahrain	239	1,528	6.4	5.66	4.06	7.83	22.06	1,527.68	1,342.78	-12.10
4	Canada	11,415	22,729	2.0	1.92	1.32	89.94	22.80	754.16	801.96	6.34
5	Colombia	890	10,135	11.4	1.86	3.04	44.38	41.84	768.59	677.66	-11.83
6	Ecuador	202	2,549	12.6	1.33	2.37	13.65	28.95	887.63	1,042.01	17.39
7	Indonesia	1,614	7,557	4.7	1.52	0.73	14.36	17.99	897.04	931.91	3.89
8	Iran	16,474	11,231	-0.3	13.20	2.47	112.71	16.92	959.68	1,370.70	42.83
9	Kuwait	8,962	7,296	-0.2	48.63	5.19	113.82	11.16	1,108.99	1,645.39	48.37
10	Malaysia	1,125	3,470	3.1	2.56	0.97	20.84	9.01	1,006.85	1,272.24	26.36
11	Nigeria	277	2,043	7.4	0.51	0.51	3.21	3.48	818.46	837.07	2.27
12	Norway	3,395	7,067	2.1	2.83	1.63	28.21	9.25	746.17	869.35	16.51
13	Oman	1,448	7,565	5.2	12.39	9.48	28.63	26.12	908.14	1,730.74	90.58
14	Paraguay	112	387	3.4	1.93	0.96	13,560	18.33	1,007.66	1,094.04	8.57
15	S. Arabia	16,355	74,400	4.5	13.90	9.46	47.77	32.13	1,213.73	1,517.71	25.04
16	Venezuela	738	473	-0.4	1.52	0.25	7.52	1.44	937.51	649.97	-30.67
Panel World		72,845	196,871	2.7	4.32	2.55	49.21	22.29	946.88	1,115.00	17.76
		930,659	1,809,337	1.9	3.66	1.79	-	-	1,048.66	1,192.84	13.75

Note: * The relevant value demonstrates how many times it increased in 2018 compared to 1990.
Source: SIPRI (2021); World Bank (2021); UN (2021a); Trademap (2021); Enerdata (2021); Global Energy Institute (2020)

According to remarkable results obtained from Table 2, the share of military expenditures in GDP decreased in other countries except for Algeria, Colombia, Ecuador, and Nigeria. Likewise, the share of military expenditures in energy export revenues decreased in other countries, excluding Algeria, Bahrain, Ecuador, and Nigeria. While military expenditures increase in almost all countries, a decrease in the share of military expenditures in GDP can be attributed to high economic growth rates in countries relative to military expenditures in this process. This situation is in line with the global trend, which has fallen from 3.66% to 1.79%. Similarly, in 2018, military expenditures in China increased 25 times compared to 1990, while the share of military expenditures in GDP decreased from 2.5% to 1.9%. Considering the example of China, it may be argued that the main reason for a decrease in the share of military expenditures in GDP in energy exporter countries is also high growth in these countries. When the period between 1990 and 2018 is compared in terms of energy security risk levels, it can be seen that energy security risk level has increased in other countries except for Venezuela, Colombia, and Bahrain.
The next section of this study gives a literature review of the subject. Section 3 introduces empirical
methodology used in the study. Finally, the results obtained by empirical analysis are reported in the last section.

2. Literature review

There are many studies examining the effect of economic growth on military expenditures using different methods and data from different countries and periods. One of the studies examining this relationship is Benoit's study (1978), which spanned the period from 1955 to 1965 and analyzed 44 less developed countries. The study discovered a strong positive correlation between high defensive loads and rapid economic growth rates in these nations. Chowdhury (1991) investigated a diversified period for each country and found evidence of a causality relationship between defense expenditures and economic growth in 15 developing countries. Moreover, the study identified causality from economic growth to defense expenditures in 7 developing countries and a bidirectional relationship in 3 developing countries. Dritsakis (2004) examined the period from 1960 to 2001 and concluded that there is no cointegrated relationship between defense expenditures and economic growth. However, the Granger causality results highlighted a one-
way causality link from economic growth to defense expenditures for both Greece and Türkiye.
Karagianni and Pempetzoglu (2009) focused on Türkiye in the period from 1949 to 2004. The study demonstrated the presence of causality between military expenditures and economic development. Furthermore, it identified both linear and non-linear causal relationships in the context of Türkiye. Hirnissa et al. (2009) conducted a comprehensive study spanning the years 1965 to 2006 across several Southeast Asian nations. For Indonesia, Thailand, and Singapore, the study revealed a long-term relationship between military spending and economic growth. The results were mixed for other nations in the ASEAN-5 group: Singapore exhibited bi-directional causality, Indonesia and Thailand displayed one-way causality from military spending to economic growth, while no significant relationship was observed for Malaysia and the Philippines. Topcu and Aras (2015) examined the period from 1973 to 2010 and explored the interactions between defense expenditures and economic growth in the context of European Union (EU) member states. Their findings reveal a significant long-term relationship within 10 out of 16 EU member states. Notably, Belgium, Italy, Spain, and the UK displayed a bidirectional relationship between defense expenditures and economic growth. Conversely, France, Germany, the Netherlands, and Sweden exhibited one-directional causality from defense expenditures to economic growth. Similarly, Austria, Bulgaria, Hungary, Ireland, Poland, Portugal, Denmark, and Greece displayed one-directional causality from economic growth to defense expenditures. Khalid and Razaq (2015) explored a reverse direction relationship between military spending and economic growth within the United States during the period from 1970 to 2011. The results of their study underscore a reverse direction relationship between military spending and economic growth for the USA. Malizard (2016) focused on the years 1960 to 2011 and found that public expenditures have detrimental effects on economic growth. In contrast, military expenditures were observed to be less harmful compared to non-military civilian expenditures within the European Union (EU15) economies. Augier et al. (2017) evaluated models with the FederRam model and the augmented Solow model to understand economic growth in China. Their findings suggest that the Feder-Ram model poorly explained economic growth in China, while the augmented Solow model demonstrated that a 1% increase in defense expenditures increases economic growth by about 0.15% to 0.19%. Hatemi-J et al. (2018) explored the hypotheses centered around military spending
and economic growth. They confirmed the hypothesis linking military spending to economic growth in China and Japan. Moreover, they validated the growth-based hypothesis in several countries, including France, Russia, Saudi Arabia, and the US. The authors revealed that robust economic growth does not inherently lead to automatic growth in military spending, except in the case of Saudi Arabia. Additionally, they postulated that heightened perceptions of threats in these countries correlate with increased defense spending. Bellos (2019) conducted an examination covering the years from 1985 to 2018, focusing on the association between variables in a sample of 31 transition economies. The study unveiled diverse patterns of association, with certain samples indicating positive relationships, while others displayed negative associations. Importantly, the direction of causality is from military expenditure towards growth and development-related variables in the vast majority of the cases.

Chun (2010) conducted a study spanning the period from 1997 to 2007, focusing on five oil-rich countries. The study uncovers an inelastic correlation between oil revenues and defense expenditures in these nations. Notably, during periods characterized by substantial declines in oil revenues, governments displayed a propensity to either augment their defense expenditures or, at the very least, mitigate a decrease in defense spending at a slower pace compared to a decline in oil revenues. Likewise, at a time of high oil revenues, defense expenditures often witnessed a more pronounced increase compared to an upsurge in oil sales. The author posits that in both scenarios, governments seemed to safeguard defense expenditures in the face of adverse economic circumstances. Farzanegan (2011) explored the years 1959 to 2007 and focused on Iran's reactions to shocks in oil revenues or oil prices. The study found that while Iran's military and security spending exhibited noteworthy responses to these shocks, its social spending components displayed relatively muted reactions. Perlo-Freeman (2012) analyzed the period from 1975 to 2008, focusing specifically on Algerian military spending. The study unearthed a statistically significant and positive effect of oil income on Algerian military expenditures, underscoring the influence of oil revenues on defense spending. Cotet and Tsui (2013) undertook a comprehensive examination spanning the period from 1930 to 2003, but focusing especially on the period from 1988 to 2003. The study elucidated a meaningful positive correlation between oil assets and the defense burden in non-democratic countries. This connection sheds light on the role
of oil assets in shaping defense expenditure patterns within such political contexts. Ali and Abdellatif (2015) conducted an investigation spanning from 1987 to 2012, focusing on the Middle East and North Africa (MENA) countries. The study reveals that certain natural resources, notably oil and forest resources, have led to the escalation of military expenditures in these regions. Additionally, the study found that the rent received from coal and natural gas exerts a negative influence on military expenditures, while the rent derived from minerals has no discernible impact on military spending. These findings were established while accounting for variables such as GDP growth and per capita income. Al-Mawali (2015) explored the years 1987 to 2012, particularly concentrating on the Gulf Cooperation Council (GCC) countries. The study suggests that military spending is predominantly driven by the rent obtained from oil rather than gas and minerals. Furthermore, the study concludes that the Gulf Wars (I and II) and the Arab Spring events do not hold statistical significance in explaining the variance in GCC's military expenditures. Khan and Haque (2019) undertook a comprehensive analysis from 1986 to 2016, encompassing the Middle East region. The study uncovers a significant adverse correlation between military expenditures and both exports and oil rents. This correlation persists across the analysis of countries with higher average oil exports than the Middle East norm. Moreover, the study reveals that the military burden exerts a negative influence on economic growth throughout the entire model specification. Notably, the authors observe that a decrease in military spending over time indicates adverse causality between development and conflict. Erdoğan et al. (2020) conducted a study with varying periods across different countries. Their research established a connection between variables encompassing entire countries. Furthermore, the study found that volatility in oil prices positively impacts military spending in six Gulf Cooperation Council (GCC) countries, with the exception of Bahrain. Bakirtas (2020) focused on the years 1980 to 2016, particularly concentrating on seven countries within the Organization of the Petroleum Exporting Countries (OPEC). The study discerns causality in several directions: from crude oil exports and crude oil prices to military spending, from crude oil exports and military spending to crude oil prices, and from spending and crude oil prices to crude oil exports. These intricate relationships highlight the influence of oil markets on military expenditures. Dizaji and Farzanegan (2021) analyzed the period from 1960 to 2017, with
a specific focus on Iran. The study demonstrates that an increase in the density of sanctions against Iran is associated with a considerable decrease in military expenditures, both in the short term and in the long term. Notably, multilateral sanctions exhibit a particularly pronounced impact, leading to a decline of approximately 77% in Iran's military expenditures in the long term.

Accordingly, when the literature examining the effect of economic growth on military expenditures is generally evaluated, it is seen that there is no certain consensus in the literature. In this direction, there are different results in different countries and time periods. However, the dominant view is that there is a positive relationship between economic growth and military expenditures. Likewise, there is no consensus on the impact of energy export revenues and resource wealth on military spending. Again, the dominant view here is that there is a positive relationship between energy export revenues on military expenditures.
On the other hand, there are few studies that analyze the effects of energy security on economic growth. In a series of research endeavors, various scholars have examined the intricate relationship between energy security and economic growth across different periods and regions. Kartal (2018) and Kartal and Öztürk (2020) investigated the interplay between these variables within the time frame spanning the period from 1996 to 2014 for 15 Middle Eastern countries. Their study revealed a notable long-term connection between energy security risk levels and economic growth. Specifically, they found that an escalation in energy security risk levels exerted a negative influence on long-term economic growth. However, the cross-sectional dependence was not considered in the study. Additionally, their analysis presented evidence supporting a bidirectional causal relationship between energy security and economic growth. Kartal (2022d) conducted an analysis of the intricate relationship between energy security, economic growth, and exports within the context of 16 Middle Eastern countries. The study covered the period from 1980 to 2016, and special attention was paid to addressing cross-sectional dependence. The findings of this study unveiled a noteworthy pattern: a 1% escalation in energy security risk level corresponded to an approximate 0.66% reduction in economic growth. Furthermore, it is detected that a bidirectional causality relationship existed between energy security, economic growth, and exports. Stavytskyy et al. (2018) con-
tributed to this discourse by examining 29 European countries in the period from 1997 to 2016. Through their research, they discerned a positive correlation between an increase in gross domestic product (GDP) and the new Energy Security Index (NSI). Conversely, their findings indicated a negative correlation between GDP and the Consumer Price Index (CPI). Fang et al. (2018) took a distinctive approach by proposing five distinct dimensions to characterize energy security: availability, accessibility, affordability, acceptability, and developability. They employed these dimensions to establish China's Sustainable Energy Security (CSES) evaluation index model. This study, conducted between 2005 and 2015, offered insights into China's energy security dynamics and revealed changing trends within the proposed model. Their results spotlighted the pivotal importance of availability and developability within China's energy security index system. The authors identified a downward trajectory for availability and an inverted U-shaped trend for developability, with the nadir in 2011. Notably, the years 2008 to 2012 were identified as a period of risk for China's sustainable energy security. Le and Nguyen (2019) extended the analysis to a global scale, encompassing 74 countries from 2002 to 2013. They demonstrated a positive relationship between energy security and economic growth for both the entire sample and sub-samples. Their findings also indicated that energy insecurity, quantified by energy density and carbon density, had a negative impact on economic growth. The authors underscored the interconnectedness of economic development, energy security, and climate change mitigation at a global level, advocating for comprehensive policies to address these interlinked challenges. Shifting focus to the Turkic world countries including Türkiye, Azerbaijan, Kazakhstan, Turkmenistan, and Uzbekistan, Kartal (2022a) evaluated the relationship between energy security and economic growth from 1992 to 2016. Employing the panel DurbinHausman cointegration test, the study established a significant long-term association between the variables. Notably, a 1% increase in energy security risk level within the Turkic world countries was found to correspond to a reduction of approximately 0.95% in economic growth. In further investigations, Kartal (2022b) utilized asymmetric causality analysis for the period from 1980 to 2018. The findings indicated unidirectional causality, where an increase in energy security risk level led to negative shocks in GDP. Expanding on this topic, Kartal
(2022c) employed the NARDL and ARDL methods to probe the asymmetric effects of energy security on Turkish economic growth during the same period. The study identified an asymmetrical relationship between energy security and economic growth in Türkiye. The results showcased that a 1% escalation in energy security risk level correlated with an approximate 0.60% reduction in economic growth, whereas a 1% decrease in energy security risk level corresponded roughly with a 1.72% upswing in economic growth. Lastly, Kartal (2022e) examined a broad range of 74 countries, revealing varying causality relationships between energy security risk level and GDP. While unidirectional causality from energy security risk level to GDP was established for 14 countries and from GDP to energy security risk level for 20 countries, a bidirectional causal association emerged for 22 countries. Notably, 18 countries exhibited no discernible causality between energy security risk level and GDP.
These cumulative research endeavors shed light on the intricate interdependencies between energy security and economic growth across diverse temporal and geographical contexts. Despite that, according to the literature review conducted in this study, although there are many studies examining the effect of economic growth and energy exports on military expenditures and between energy security and economic growth, empirical studies examining the relationship between energy security and military expenditures cannot be determined. In this context, this paper investigating the causality relationship between economic growth, energy export revenues, and military expenditures, as well as the causality relationship between energy security and military expenditures, was designed to fill this important gap in the literature.

3. Data and methodology

This study aims to examine the causality relationship between military expenditures and economic growth, energy export revenues, and energy security risk level for 16 major energy exporter countries between 1990 and 2018 by using Kónya's (2006) bootstrap panel causality approach. ${ }^{2}$ The variables included in the empirical analysis and the sources the variables were obtained from are given in Table 3.the variables were obtained from are given in Table 3.

[^1]Table 3 Definitions and data sources

Data	Definitions	Main source	Additional source(s)
me	Military expenditure (current USD)	SIPRI (2021)	World Bank (2021); Global Firepower (2021)
enx	Energy export revenues (current USD) (HS Code: 27)	UN (2021a)	Trademap (2021); Enerdata (2021)
gdp	Gross domestic product	World Bank (2021)	IMF (International Monetary Fund (IMF), 2021); UN (2021b); UN (2021c)
es	Energy security risk index	Global Energy Insti- tute (2020)	

Note: Missing data in the "main source" were supplemented with the help of "additional sources".

Source: Author

The biggest advantage of Kónya's (2006) bootstrap panel causality, which is based on the seemingly unrelated regression (SUR) method and assumed country-specific heterogeneity, does not require any pre-testing such as unit roots and cointegration and takes into account cross-sectional dependence. Kónya's (2006) bootstrap panel causality, which was generated to analyze the causality relationship between military expenditures and economic growth, energy export revenues and energy security risk level in this study, is based on the following systems of equations:

$$
\begin{gather*}
m e_{1, t}=\alpha_{1,1}+\sum_{i=1}^{k m e} \beta_{1,1, i} m e_{1, t-i}+\sum_{i=1}^{k e n x} \delta_{1,1, i} e x_{1, t-i}+\varepsilon_{1,1, t} \\
m e_{2, t}=\alpha_{1,2}+\sum_{i=1}^{k m e} \beta_{1,2, i} m e_{2, t-i}+\sum_{i=1}^{k e n x} \delta_{1,2, i} e x_{2, t-i}+\varepsilon_{1,2, t} \tag{1}\\
\vdots \\
m e_{N, t}=\alpha_{1, N}+\sum_{i=1}^{k m e} \beta_{1, N, i} m e_{N, t-i}+\sum_{i=1}^{k e n x} \delta_{1, N, i} e x_{N, t-i}+\varepsilon_{1, N, t}
\end{gather*}
$$

and

$$
\begin{gathered}
e n x_{1, t}=\alpha_{2,1}+\sum_{i=1}^{k m e} \beta_{2,1, i} m e_{1, t-i}+\sum_{i=1}^{k e n x} \delta_{2,1, i} e x_{1, t-i}+\varepsilon_{2,1, t} \\
e n x_{2, t}=\alpha_{2,2}+\sum_{i=1}^{k m e} \beta_{2,2, i} m e_{2, t-i}+\sum_{i=1}^{k e n x} \delta_{2,2, i} e x_{2, t-i}+\varepsilon_{2,2, t} \\
\vdots \\
e n x_{N, t}=\alpha_{2, N}+\sum_{i=1}^{k m e} \beta_{2, N, i} m e_{N, t-i}+\sum_{i=1}^{k e n x} \delta_{2, N, i} e x_{N, t-i}+\varepsilon_{2, N, t}
\end{gathered}
$$

and

$$
\begin{gathered}
m e_{1, t}=\alpha_{1,1}+\sum_{i=1}^{k m e} \beta_{1,1, i} m e_{1, t-i}+\sum_{i=1}^{k g d p} \delta_{1,1, i} g d p_{1, t-i}+\varepsilon_{1,1, t} \\
m e_{2, t}=\alpha_{1,2}+\sum_{i=1}^{k m e} \beta_{1,2, i} m e_{2, t-i}+\sum_{i=1}^{k g d p} \delta_{1,2, i} g d p_{2, t-i}+\varepsilon_{1,2, t} \\
\vdots \\
m e_{N, t}=\alpha_{1, N}+\sum_{i=1}^{k m e} \beta_{1, N, i} m e_{N, t-i}+\sum_{i=1}^{k g d p} \delta_{1, N, i} g d p_{N, t-i}+\varepsilon_{1, N, t}
\end{gathered}
$$

and

$$
\begin{gather*}
\operatorname{gdp}_{1, \mathrm{t}}=\alpha_{2, \mathrm{l}}+\sum_{\mathrm{i}=1}^{\mathrm{kme}} \beta_{2, \mathrm{l}, \mathrm{i}} \mathrm{me}_{1, \mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=1}^{\mathrm{kgdp}} \delta_{2, \mathrm{l}, \mathrm{i}} \mathrm{gdp}_{1, \mathrm{t}-\mathrm{i}}+\varepsilon_{2,1, \mathrm{t}} \\
\operatorname{gdp}_{2, \mathrm{t}}=\alpha_{2,2}+\sum_{\mathrm{i}=1}^{\mathrm{kme}} \beta_{2,2, \mathrm{i}} \mathrm{me}_{2, \mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=1}^{\mathrm{kgpp}} \delta_{2,2, \mathrm{i}} \operatorname{gdp}_{2, \mathrm{ti}}+\varepsilon_{2,2, \mathrm{t}} \tag{4}\\
\vdots \\
\operatorname{gdp}_{\mathrm{N}, \mathrm{t}}=\alpha_{2, \mathrm{~N}}+\sum_{\mathrm{i}=1}^{\mathrm{kme}} \beta_{2, \mathrm{~N}, \mathrm{i}} \mathrm{me}_{\mathrm{N}, \mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=1}^{\mathrm{kgdp}} \delta_{2, \mathrm{~N}, \mathrm{i}} \mathrm{gdp}_{\mathrm{N}, \mathrm{t}-\mathrm{i}}+\varepsilon_{2, \mathrm{~N}, \mathrm{t}}
\end{gather*}
$$

and

$$
\begin{gather*}
m e_{1, t}=\alpha_{1,1}+\sum_{i=1}^{k m e} \beta_{1,1, i} m e_{1, t-i}+\sum_{i=1}^{k e s} \delta_{1,1, i} e s_{1, t-i}+\varepsilon_{1,1, t} \\
m e_{2, t}=\alpha_{1,2}+\sum_{i=1}^{k m e} \beta_{1,2, i} m e_{2, t-i}+\sum_{i=1}^{k e s} \delta_{1,2, i} e s_{2, t-i}+\varepsilon_{1,2, t} \tag{5}\\
\vdots \\
m e_{N, t}=\alpha_{1, N}+\sum_{i=1}^{k m e} \beta_{1, N, i} m e_{N, t-i}+\sum_{i=1}^{k e s} \delta_{1, N, i} e s_{N, t-i}+\varepsilon_{1, N, t}
\end{gather*}
$$

and

$$
\begin{gather*}
e s_{1, t}=\alpha_{2,1}+\sum_{i=1}^{k m e} \beta_{2,1, i} m e_{1, t-i}+\sum_{i=1}^{k e s} \delta_{2,1, i} e s_{1, t-i}+\varepsilon_{2,1, t} \\
e s_{2, t}=\alpha_{2,2}+\sum_{i=1}^{k m e} \beta_{2,2, i} m e_{2, t-i}+\sum_{i=1}^{k e s} \delta_{2,2, i} e s_{2, t-i}+\varepsilon_{2,2, t} \tag{6}\\
\vdots \\
e s_{N, t}=\alpha_{2, N}+\sum_{i=1}^{k m e} \beta_{2, N, i} m e_{N, t-i}+\sum_{i=1}^{k e s} \delta_{2, N, i} e s_{N, t-i}+\varepsilon_{2, N, t}
\end{gather*}
$$

The following notations are used in the systems of equations given above: "me"- military expenditure, "enx" - energy export revenues, "gdp" - gross domestic product, "es" - energy security risk level, " N " - number of countries, " T " - time period, and " k " - lag length. Accordingly, there is causality from export revenues to military expenditure in Eq. (1), from military expenditure to energy export revenues in Eq. (2), from gross domestic product to military expenditure in Eq. (3), from military
expenditure to gross domestic product in Eq. (4), from energy security to military expenditure in Eq. (5), and from military expenditure to energy security in Eq. (6).
In this study, the slope homogeneity test, which is one of the two pre-testings required for Kónya's (2006) bootstrap panel causality approach, was carried out with the delta tests proposed by Pesaran and Yamagata (2008), which derived from the \hat{S} test of Swamy (1970). While the null hypothesis of these tests is that parameters are homogeneous, an alternative hypothesis is that parameters are heterogeneous.
Whether the data sets used in this study contain cross-sectional dependence was investigated using by the $\mathrm{LM}_{\mathrm{BP}}$ test (Breusch \& Pagan, 1980), the $\mathrm{CD}_{\mathrm{LM}}$ test (Pesaran, 2004), the CD test (Pesaran, 2004), and the $\mathrm{LM}_{\text {adj }}$ test (Pesaran et al., 2008). The null hypothesis of these tests is that there is no cross-sectional dependence, while an alternative hypothesis is that there is cross-sectional dependence.

4. Empirical results

Cross-sectional dependence tests and slope heterogeneity tests need to be implemented before analyzing the Kónya (2006) bootstrap panel granger causality. Accordingly, test results, which include delta tests for slope heterogeneity detection and the $\mathrm{LM}_{\mathrm{BP}}$ (Breusch \& Pagan, 1980), the $\mathrm{CD}_{\mathrm{LM}}$ (Pesaran, 2004), the CD (Pesaran, 2004), and the LMadj (Pesaran et al., 2008) for cross-sectional dependence detection, are given in Table 4. When the results obtained from the cross-sectional dependence tests were examined, the null hypothesis stating that there is no cross-sectional dependence was rejected at a 1% significance level, and the alternative hypothesis stating that there is cross-sectional dependence was accepted, except for the result obtained from the $\mathrm{CD}_{\mathrm{LM}}$ (2004) test for the lnme variable. Considering the results obtained from the CD (Pesaran, 2004) test for the lnme variable, the null hypothesis was rejected at a 10% significance level. Likewise, when the results obtained from delta tests for slope heterogeneity were examined, the null hypothesis indicating that parameters are homogeneous was rejected at a 1% significance level, and the alternative hypothesis indicating that the parameters are heterogeneous was accepted.

Table 4 Cross-sectional dependence and slope heterogeneity tests

Tests	lnme		lnenx		lngdp		lnes	
	Stat.	p-val.	Stat.	p-val.	Stat.	p-val.	Stat.	p-val.
LM $_{\mathrm{BP}}$	228.609	0.000	344.247	0.000	231.427	0.000	190.185	0.000
CD $_{\text {LM }}$	7.011	0.000	14.475	0.000	7.193	0.000	4.530	0.000
CD $_{\text {LM }}^{\text {adj }}$	-1.442	0.075	7.618	0.000	-2.294	0.011	-2.914	0.002
Delta $^{20.638}$	0.000	0.914	0.180	6.285	0.000	3.809	0.000	
Delta $_{\text {adj }}$	3.014	0.001	2.026	0.021	4.280	0.000	2.555	0.005

Source: Author

Causality analysis is performed after providing the necessary pre-conditions for the Kónya (2006) bootstrap panel granger causality test. The results obtained from Eq. (1) expressing causality from energy export revenues to military expenditure, and Eq. (2) expressing causality from military expenditure to energy export revenues are shown in Table
5. According to the results obtained, it was determined that there is causality from export revenues to military expenditure for Canada, Iran, Norway, Oman, and Saudi Arabia, and that there is causality from military expenditure to energy export revenues for Algeria, Colombia, and Nigeria.

Table 5 Panel causality test results (energy export revenues vs. military expenditure)

CN	Countries	H_{0} : ENX does not cause ME				H_{0} : ME does not cause ENX			
		Statistic	Critical values			Statistic	Critical values		
			1\%	5\%	10\%		1\%	5\%	10\%
1	Algeria	12.602	75.131	53.835	46.037	6.118**	9.001	5.831	4.461
2	Australia	6.968	70.554	40.710	32.267	3.506	55.525	41.031	34.573
3	Bahrain	15.855	50.933	34.308	25.656	0.768	19.777	15.695	13.440
4	Canada	12.109***	11.914	8.006	6.256	0.033	65.061	45.267	37.512
5	Colombia	0.407	13.289	7.944	5.731	30.145**	50.085	29.363	22.478
6	Ecuador	26.828	53.599	39.993	35.180	10.162	31.597	23.982	21.102
7	Indonesia	3.341	21.583	14.202	11.149	0.225	41.433	26.218	21.495
8	Iran	9.127*	17.338	9.628	6.698	0.939	39.524	21.572	12.833
9	Kuwait	13.893	129.040	95.448	78.077	2.111	76.210	60.235	49.500
10	Malaysia	27.629	68.072	44.162	33.714	12.212	67.855	41.625	32.588
11	Nigeria	6.970	45.390	30.557	24.199	3.392**	5.531	3.350	2.343
12	Norway	11.497**	11.795	6.719	4.960	0.710	18.054	12.131	9.946
13	Oman	11.485**	19.786	11.466	8.786	0.960	22.752	13.881	10.272
14	Paraguay	0.895	86.091	58.017	48.484	0.352	16.345	10.246	7.638
15	S. Arabia	$36.951^{* * *}$	18.741	14.053	10.824	2.117	52.752	34.835	28.454
16	Venezuela	2.931	22.004	10.015	7.271	1.846	31.160	16.035	10.381

Note: ${ }^{*},{ }^{* *},{ }^{* * *}$ indicate significance at the $0.01,0.05$, and 0.1 levels, respectively.
Source: Author

The results obtained from Eq. (3) expressing causality from GDP to military expenditure and Eq. (4) expressing causality from military expenditure to GDP are shown in Table 6. According to the results obtained, it was determined that there is one-directional causality from GDP to military expenditure
for Bahrain, Canada, Colombia, Norway, Oman, and Saudi Arabia, there is one-directional causality from military expenditure to GDP for Australia, Indonesia, Nigeria, Paraguay, and Venezuela, and there is bidirectional causality between military expenditure and GDP for Iran.

Table 6 Panel causality test results (GDP vs. military expenditure)

CN	Countries	H_{0} : GDP does not cause ME				H_{0} : ME does not cause GDP			
		Statistic	Critical values			Statistic	Critical values		
			1\%	5\%	10\%		1\%	5\%	10\%
1	Algeria	6.282	20.411	15.699	12.904	3.608	9.621	7.042	5.735
2	Australia	0.042	58.531	39.808	32.305	133.259***	73.650	56.619	48.992
3	Bahrain	27.828**	43.512	23.811	16.799	0.000	23.333	18.173	16.475
4	Canada	17.528**	18.087	10.553	7.372	9.180	61.755	41.868	35.266
5	Colombia	9.301***	6.917	4.341	3.076	0.376	47.738	29.472	23.031
6	Ecuador	6.369	52.323	31.520	25.964	0.059	30.977	23.607	20.475
7	Indonesia	12.091	23.775	15.772	12.140	37.052***	32.597	21.421	17.285
8	Iran	12.519**	21.539	10.736	7.207	19.608**	29.188	13.008	8.395
9	Kuwait	9.062	27.653	20.221	17.800	0.051	71.469	58.058	50.503
10	Malaysia	9.846	61.688	37.345	31.593	0.045	70.079	49.558	41.317
11	Nigeria	4.383	45.214	25.417	17.072	4.647**	4.712	2.367	1.624
12	Norway	7.702*	18.172	10.616	7.282	3.118	17.462	11.195	9.042
13	Oman	17.898***	8.239	4.704	3.370	2.296	23.392	13.345	10.129
14	Paraguay	3.980	59.624	34.634	28.936	6.069*	12.227	7.071	5.558
15	S. Arabia	83.095***	22.897	14.870	11.689	0.837	40.067	30.361	25.972
16	Venezuela	2.576	16.924	9.334	7.009	15.889**	24.047	13.656	9.981

Note: ", "*, \%** indicate significance at the $0.01,0.05$, and 0.1 levels, respectively.
Source: Author

The results from the Kónya (2006) bootstrap panel causality test obtained from Eq. (5) expressing causality from energy security to military expenditure and Eq. (6) expressing causality from military expenditure to energy security are shown in Table 7. According to the results obtained, it was deter-
mined that there is one-directional causality from energy security to military expenditure for Iran and Oman, and there is one-directional causality from military expenditure to energy security for Algeria, Nigeria, and Saudi Arabia.

Table 7 Panel causality test results (energy security vs. military expenditure)

CN	Countries	H_{0} : ES does not cause ME				H_{0} : ME does not cause ES			
		Statistic	Critical values			Statistic	Critical values		
			1\%	5\%	10\%		1\%	5\%	10\%
1	Algeria	1.705	55.079	40.639	34.719	13.262***	8.519	6.204	4.988
2	Australia	18.645	54.073	34.835	28.076	1.580	45.913	36.515	31.770
3	Bahrain	0.283	84.773	55.053	44.336	2.000	23.198	16.134	13.828
4	Canada	3.006	10.478	6.973	5.785	6.680	70.674	48.674	42.057
5	Colombia	0.053	9.537	6.021	4.178	0.100	22.377	15.674	11.539
6	Ecuador	5.893	47.543	28.787	22.130	9.516	39.794	25.944	22.540
7	Indonesia	1.204	6.888	4.362	3.066	1.870	34.916	25.379	19.844
8	Iran	15.383*	30.255	16.693	11.189	0.946	27.789	12.188	8.123
9	Kuwait	7.827	23.524	17.524	14.542	0.644	74.674	51.662	43.511
10	Malaysia	16.629	56.873	37.676	31.601	7.786	43.234	32.436	26.934
11	Nigeria	0.051	13.371	8.497	5.835	10.183***	4.945	2.689	1.908
12	Norway	0.195	36.988	25.529	20.393	0.907	22.388	16.373	14.022
13	Oman	23.164***	19.421	11.958	9.335	0.506	16.497	9.887	7.060
14	Paraguay	0.005	4.690	2.692	1.854	0.059	11.445	6.261	4.544
15	S. Arabia	0.129	15.047	8.294	5.422	40.516**	45.411	32.448	27.010
16	Venezuela	5.455	23.233	12.746	8.932	0.717	28.468	15.744	10.397

Note: *, **, *** indicate significance at the $0.01,0.05$, and 0.1 levels, respectively.
Source: Author

Moreover, all results are summarized in Table 8 and Table 9, including causality from GDP to energy export revenues, from energy export revenues to

GDP, from energy security to GDP, and from GDP to energy security (for results, see Appendix 1, Appendix 2, and Appendix 3).

Table 8 Summary of the direction of causality

Causality	dza	aus	bhr	can	col	ecu	idn	irn	kwt	mys	nga	nor	omn	pry	sau	ven
enx \rightarrow me				\%\%\%				*				\% \%	\% \%		\%\%	
gdp \rightarrow me			\%	\% \%	\% \% \%			\% *				\%	***		\%\%\%	
es \rightarrow me								*					***			
me \rightarrow enx	**				**						\%					
gdp \rightarrow enx					\%**								\% \% \%			*
es \rightarrow enx				\%	\% \%					\%			\% \%	\%㭗\%		
$\mathrm{me} \rightarrow \mathrm{gdp}$		\%\%\%					\%**	\% \%			\% \%			*		\% \%
enx \rightarrow gdp					\%\% $\%$	\% \%	\% \% \%	\% \% \%		*			*		\%\% $\%$	\%\% \%
es \rightarrow gdp																
me \rightarrow es	\% \% \%										\%\% \%				\% \%	
enx \rightarrow es				\%*				\% \%					\% \%			
gdp \rightarrow es				\%**				\%**	\%*				\%\% \%		\%	*

Note: *, *", *** indicate significance at the $0.01,0.05$, and 0.1 levels, respectively. " \rightarrow " represents the direction of causality. Source: Author

When the results obtained for the countries are examined, there are one-directional causality relationships from military expenditures to energy export revenues and energy security in Algeria. There is one-directional causality from military expenditures to GDP in Australia. There is one-directional causality from GDP to military expenditures in Bahrain. There are one-directional causality relationships from energy export revenues and GDP to military expenditures, from GDP to energy security, and there is bidirectional causality between energy security and energy export revenues in Canada. There is one-directional causality from military expenditures to energy export revenues, from GDP to military expenditures and energy export revenues, and from energy security to GDP energy export revenues in Colombia. There is one-directional causality from energy security to GDP in Ecuador. There is one-directional causality from military expenditures and energy security to GDP in Indonesia. For Iran, there is one-directional causality from energy export revenues to military expenditures, GDP, and energy security, and from energy security to military expenditures. There is bidirectional causality between military expenditures and GDP, and energy security and GDP. There is one-directional
causality from GDP to energy security in Kuwait. There is one-directional causality from energy security to GDP and energy export revenues in Malaysia. There is one-directional causality from military expenditures to energy export revenues, and GDP and energy security in Nigeria. There is onedirectional causality from energy export revenues and GDP to military expenditures in Norway. There is one-directional causality from energy export revenues, GDP, and energy security to military expenditures, and from GDP to energy export revenues, and there is bidirectional causality between GDP and energy security, and energy export revenues and energy security in Oman. There is one-directional causality from military expenditures to GDP, and from energy security to energy export revenues in Paraguay. There is one-directional causality from energy export revenues and GDP to military expenditures, from military expenditures to energy security, and from energy security to energy export revenues. There is bidirectional causality between GDP and energy security in Saudi Arabia. And finally, there is one-directional causality from military expenditures to GDP, and bidirectional causality between GDP and energy export revenues, and GDP and energy security in Venezuela.

Table 9 Summary of the direction of causality by country

CN	Countries	ENX vs ME	GDP vs ME	ES vs ME	GDP vs ENX	GDP vs ES	ES vs ENX
1	Algeria	\longleftarrow	-	\longleftarrow	-	-	-
2	Australia	-	\longleftarrow	-	-	-	-
3	Bahrain	-	\longrightarrow	-	-	-	-
4	Canada	\longrightarrow	\longrightarrow	-	-	\longrightarrow	\rightleftarrows
5	Colombia	\longleftarrow	\longrightarrow	-	\longrightarrow	\longleftarrow	\longrightarrow
6	Ecuador	-	-	-	-	\longleftarrow	-
7	Indonesia	-	\longleftarrow	-	-	\longleftarrow	-
8	Iran	\longrightarrow	\rightleftarrows	\longrightarrow	\longleftarrow	\rightleftarrows	\longleftarrow
9	Kuwait	-	-	-	-	\longrightarrow	-
10	Malaysia	-	-	-	-	\longleftarrow	\longrightarrow
11	Nigeria	\longleftarrow	\longleftarrow	\longleftarrow	-	-	-
12	Norway	\longrightarrow	\longrightarrow	-	-	-	-
13	Oman	\rightarrow	\longrightarrow	\longrightarrow	\longrightarrow	\rightleftarrows	\rightleftarrows
14	Paraguay	-	\longleftarrow	-	-	-	\longrightarrow
15	Saudi Arabia	\longrightarrow	\longrightarrow	\longleftarrow		\rightleftarrows	\rightarrow
16	Venezuela	-	\leftarrow	-	\rightleftarrows	\rightleftarrows	-

Note: " \rightarrow, \leftarrow and \rightleftarrows " represent the direction of causality.
Source: Author

5. Conclusion

This study aims to examine the causality relationship between military expenditures and economic growth, energy export revenues, and energy security risk level for 16 major energy exporter countries between 1990 and 2018 using the Kónya bootstrap
panel causality approach. According to the results obtained, it was found that there is at least one causality relationship between military expenditures, energy export revenues, GDP, and energy security for all countries. Moreover, it was determined that there is at least one causal relationship between military expenditures and other variables, includ-
ing energy export revenues, GDP, and energy security in all countries except Ecuador, Kuwait, and Malaysia.

When the results obtained are evaluated, the fact that there is causality determined from energy export revenues to military expenditures in Canada, Iran, Norway, Oman, and Saudi Arabia, demonstrates that military expenditures are affected by energy export revenues in these countries. Therefore, it may be argued that energy stimulation of export revenues in these countries may also stimulate military expenditures. On the other hand, the fact that there is causality determined from military expenditures to energy export revenues in Algeria, Colombia, and Nigeria, demonstrates that energy export revenues are affected by military expenditures in these countries.

Moreover, the fact that there is causality determined from GDP to military expenditures in Bahrain, Canada, Colombia, Iran, Norway, Oman, and Saudi Arabia, demonstrates that military expenditures are affected by GDP in these countries. Therefore, it may be argued that stimulation of economic growth in these countries may also stimulate military expenditures. On the other hand, the fact that there is causality determined from military expenditures to GDP in Australia, Indonesia, Iran, Nigeria, Paraguay, and Venezuela, demonstrates that GDP is affected by military expenditures in these countries. Therefore, it may be argued that military expenditures stimulate economic growth in these countries.

When the results obtained for the causal relationship between military expenditures, economic growth, and energy export revenues are evaluated in general, they demonstrate that they cannot be generalized across countries. However, it may be argued that the direction of causality between military expenditures and energy export revenues is predominantly from energy export revenues to military expenditures, while causality between economic growth and military expenditures is predominantly from economic growth to military expenditures.
The most important factor that distinguishes this study from other studies on the subject is also the inclusion of the energy security variable in the analysis. Quite remarkable results have been obtained in this direction. Firstly, the fact that there is causality determined from military expenditures to ener-
gy security risk level in Algeria, Nigeria, and Saudi Arabia, demonstrates that energy security risk level is affected by military expenditures in these countries. On the other hand, the fact that there is causality determined from energy security risk level to military expenditures in Iran and Oman, demonstrates that military expenditures are affected by energy security risk level in these countries. Therefore, it may be argued that military expenditures are an important policy tool for ensuring energy security in these countries.
Secondly, the fact that there is causality determined from energy security risk level to economic growth in Colombia, Ecuador, Indonesia, Iran, Kuwait, Oman, and Saudi Arabia, demonstrates that economic growth is affected by energy security risk level in these countries. Therefore, it may be argued that energy security promotes economic growth in these countries, and energy security is an important policy tool for ensuring economic growth. On the other hand, the fact that there is causality determined from economic growth to energy security risk level in Canada, Iran, Kuwait, Oman, Saudi Arabia, and Venezuela, demonstrates that energy security risk level is affected by economic growth in these countries. This result demonstrates that economic growth is an important factor in ensuring energy security in these countries. It is also quite remarkable that there is a bidirectional causality relationship between energy security and GDP in Iran, Saudi Arabia, and Venezuela, which are among the world's most important energy exporters.
Thirdly, the fact that there is causality determined from energy security risk level to energy export revenues in Canada, Colombia, Malaysia, Oman, Paraguay, and Saudi Arabia, demonstrates that energy export revenues are affected by energy security risk level in these countries. Therefore, it may be argued that among the policies to be implemented to increase energy export revenues, policies for energy security should also be included in these countries. On the other hand, the fact that there is causality determined from energy export revenues to energy security risk level in Canada, Iran, and Oman, demonstrates that energy security risk level is affected by energy export revenues in these countries. Since fluctuations and potential risks in energy exports in these countries may also affect the energy security risk level, policy practices that will eliminate the risks in energy exports may also positively affect the energy security risk level.

When the results obtained from the causality relationship between energy security and other variables (military expenditures, GDP, and energy export income) are evaluated in general, they demonstrate that they cannot be generalized across countries. However, it may be argued that energy security is an important policy tool that has important economic consequences for energy-exporting countries through its effects on different variables. In this direction, although various policy proposals can be made between countries, both indirect and direct effects should be considered. For example, energy security will be stimulated by stimulation of military expenditures in Saudi Arabia, and energy
export revenues will also be stimulated through causality from energy security to export revenues. In addition to these two links, thanks to the bidirectional link between economic growth and energy security risk level, stimulation of energy security will stimulate economic growth. Therefore, it may be mentioned that there is an indirect effect of military expenditures on economic growth. In this way, policymakers may be providing different policy recommendations that may influence energy export revenues, economic growth, energy security, and military expenditures by making more connections between variables for energy-exporting countries.

References

1. Al-Mawali, N. (2015). Do natural resources of rentier states promote military expenditures? Evidence from GCC Countries. Journal of Economic \& Financial Studies, 3(03), 49-53. https://doi.org/10.18533/jefs.v3i02.103
2. Ali, H. E. \& Abdellatif, O. A. (2015). Military expenditures and natural resources: Evidence from rentier states in the Middle East and North Africa. Defence and Peace Economics, 26(1), 5-13. https://doi.org/10.1080/10242694.2013.848574
3. Augier, M., McNab, R., Guo, J. \& Karber, P. (2017). Defense spending and economic growth: evidence from China, 1952-2012. Defence and Peace Economics, 28(1), 65-90. https://doi.org/10.1080/10242694.2015.1099204
4. Bakirtas, T. \& Akpolat, A. G. (2020). The relationship between crude oil exports, crude oil prices and military expenditures in some OPEC countries. Resources Policy, 67, 101659. https://doi.org/10.1016/j.resourpol.2020.101659
5. Bellos, S. K. (2019). Military Expenditure, Economic Growth and Development in Transition Economies: A Panel VAR GMM Approach. Applied Economics Quarterly, 65(3), 140-187. https://doi.org/10.3790/aeq.65.3.139
6. Benoit, E. (1978). Growth and defense in developing countries. Economic Development and Cultural Change, 26(2), 271-280. https://doi.org/10.1086/451015
7. Breusch, T. S. \& Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239-253. https://doi.org/10.2307/2297111
8. Chowdhury, A. R. (1991). A causal analysis of defense spending and economic growth. Journal of Conflict Resolution, 35(1), 80-97. https://doi.org/10.1177/0022002791035001005
9. Chun, C. K. S. (2010). Do oil exports fuel defense spending? The Strategic Studies Institute, U.S. Army War College. http://www.strategicstudiesinstitute.army.mil/pubs/display.cfm?pubID=967
10. Cotet, A. M. \& Tsui, K. K. (2013). Oil and conflict: What does the cross country evidence really show? American Economic Journal: Macroeconomics, 5(1), 49-80. https://doi.org/10.1257/mac.5.1.49
11. Dizaji, S. F. \& Farzanegan, M. R. (2021). Do sanctions constrain military spending of Iran? Defence and Peace Economics, 32(2), 125-150. https://doi.org/10.1080/10242694.2019.1622059
12. Dritsakis, N. (2004). Defense spending and economic growth: an empirical investigation for Greece and Turkey. Journal of Policy Modeling, 26(2), 249-264. https://doi.org/10.1016/j.jpolmod.2004.03.011
13. Enerdata (2021). Energy Statistical Yearbook 2020. https://www.enerdata.net/publications/world-energy-statistics-supply-and-demand.html
14. Erdoğan, S., Çevik, E. İ. \& Gedikli, A. (2020). Relationship between oil price volatility and military expenditures in GCC countries. Environmental Science and Pollution Research, 27(14), 17072-17084. https://doi.org/10.1007/s11356-020-08215-3
15. Fang, D., Shi, S. \& Yu, Q. (2018). Evaluation of sustainable energy security and an empirical analysis of China. Sustainability, 10(5), 1685. https://doi.org/10.3390/su10051685
16. Farzanegan, M. R. (2011). Oil revenue shocks and government spending behavior in Iran. Energy Economics, 33(6), 1055-1069. https://doi.org/10.1016/j.eneco.2011.05.005
17. Global Energy Institute (2020). International energy security risk index 2020 edition. https://www.globalenergyinstitute.org/energy-security-risk-index
18. Global Firepower (2021). Defence Budgets. https://www.globalfirepower.com/defense-spending-budget.php
19. Hatemi-J, A., Chang, T., Chen, W.-Y., Lin, F.-L. \& Gupta, R. (2018). Asymmetric causality between military expenditures and economic growth in top six defense spenders. Quality \& Quantity, 52(3), 1193-1207. https://doi.org/10.1007/s11135-017-0512-9
20. Hirnissa, M. T., Habibullah, M. S. \& Baharom, A. H. (2009). Military expenditure and economic growth in Asean-5 countries. Journal of Sustainable Development, 2(2), 192-202. https://doi.org/10.5539/jsd.v2n2p192
21. International Energy Agency (IEA) (2020). Energy security. https://www.iea.org/topics/energy-security
22. International Monetary Fund (IMF) (2021). International Financial Statistics. https://data.imf.org/regular.aspx?key=62771448
23. Karagianni, S. \& Pempetzoglu, M. (2009). Defense spending and economic growth in Turkey: A linear and non-linear Granger causality approach. Defence and Peace Economics, 20(2), 139-148. https://doi.org/10.1080/10242690801923173
24. Kartal, G. (2018). Orta Doğu Ülkelerinde politik istikrarsızllk, enerji güvenliği ve ekonomik büyüme ilişkisi [Doctoral dissertation, Nevşehir Hacı Bektaş Veli Üniversitesi]. Nevşehir Hacı Bektaş Veli Üniversitesi.
25. Kartal, G. (2022a). Enerji güvenliği ve ekonomik büyüme ilişkisi: Türk Dünyası ülke panelinden kanıtlar. Bilig, 101, 163192. https://doi.org/10.12995/bilig. 10107
26. Kartal, G. (2022b). The effects of positive and negative shocks in energy security on economic growth: Evidence from asymmetric causality analysis for Turkey. Economic Computation and Economic Cybernetics Studies and Research, 56(1), 223-239. https://doi.org/10.24818/18423264/56.1.22.14
27. Kartal, G. (2022c). Are the effects of energy security on economic growth symmetric or asymmetric in Turkey? An application of non-linear ARDL. Ege Academic Review, 22(4), 487-502. https://doi.org/10.21121/eab. 952967
28. Kartal, G. (2022d). The relationship between energy security, exports and economic growth: The case of the Middle East countries. Turkish Journal of Middle Eastern Studies, 9(1), 15-45. https://doi.org/10.26513/tocd. 899337
29. Kartal, G. (2022e). Relationship between Energy Security and Economic Growth: A Bootstrap Panel Granger Causality Analysis. Politická ekonomie, 70(4), 477-499. https://doi.org/10.18267/j.polek. 1357
30. Kartal, G. \& Öztürk, S. (2020). Politik istikrarsızlık, enerii güvenliği ve ekonomik büyüme ilişkisi: Orta Doğu ülkeleri üzerine ampirik bir inceleme. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8 (İktisadi ve İdari Bilimler), 65-78. https://doi.org/10.18506/anemon. 629534
31. Khalid, M. A. \& Razaq, M. A. J. A. (2015). The impact of military spending on economic growth: Evidence from the US economy. Research Journal of Finance and Accounting, 6(7), 183-190.
32. Khan, M. R. \& Haque, M. I. (2019). Oil, development, and military expenditure: A panel data evidence from the Middle East. Journal of Security and Sustainability Issues, 8(4), 549-568. https://doi.org/10.9770/jssi.2019.8.4(1)
33. Kónya, L. (2006). Exports and growth: Granger causality analysis on OECD countries with a panel data approach. Economic Modelling, 23(6), 978-992. https://doi.org/10.1016/j.econmod.2006.04.008
34. Le, T. H. \& Nguyen, C. P. (2019). Is energy security a driver for economic growth? Evidence from a global sample. Energy Policy, 129, 436-451. https://doi.org/10.1016/j.enpol.2019.02.038
35. Malizard, J. (2016). Military expenditure and economic growth in the European Union: Evidence from SIPRI's extended dataset. The Economics of Peace and Security Journal, 11(2), 38-44. https://doi.org/10.15355/epsj.11.2.38
36. Nazlıoğlu, Ş. (2021). TSPDLIB: GAUSS time series and panel data methods (Version 2.0). Aptech.
37. Perlo-Freeman, S. \& Brauner, J. (2012). Natural resources and military expenditure: The case of Algeria. The Economics of Peace and Security Journal, 7(1), 15-21. https://doi.org/10.15355/epsj.7.1.15
38. Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels (CESifo Working Paper No. 1229). Munich: CESifo.
39. Pesaran, M. H., Ullah, A. \& Yamagata, T. (2008). A bias-adjusted LM test of error cross-section independence. The Econometrics Journal, 11(1), 105-127. https://doi.org/10.1111/j.1368-423X.2007.00227.x
40. Pesaran, M. H. \& Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/10.1016/j.jeconom.2007.05.010
41. Stavytskyy, A., Kharlamova, G., Giedraitis, V. \& Šumskis, V. (2018). Estimating the interrelation between energy security and macroeconomic factors in European countries. Journal of International Studies, 11(3), 217-238. https://doi.org/10.14254/2071-8330.2018/11-3/18
42. Stockholm International Peace Research Institute (SIPRI) (2021). Military Expenditure Database. https://www.sipri.org/databases/milex\

43. Topcu, M. \& Aras, I. (2015). Defense spending and economic growth: Extended empirical analysis for the European Union. Defence and Peace Economics, 26(2), 233-246.
https://doi.org/10.1080/10242694.2013.774771
44. Trademap. (2021). Trade Map. https://www.trademap.org
45. United Nations (UN) (2021a). Comtrade Database. https://comtrade.un.org
46. United Nations (UN) (2021b). National Accounts-Analysis of Main Aggregates (AMA). https://unstats.un.org/unsd/snaama
47. United Nations (UN) (2021c). UNdata. http://data.un.org
48. World Bank (2021). World Development Indicators. https://databank.worldbank.org

Appendix

Appendix 1 Panel causality test results (GDP vs. Energy export revenues)

CN	Countries	Ho: GDP does not cause ENX				Ho: ENX does not cause GDP			
		Statistic	Critical values			Statistic	Critical values		
			1\%	5\%	10\%		1\%	5\%	10\%
1	Algeria	4.146	25.757	18.489	15.157	19.544	52.390	41.325	34.336
2	Australia	4.024	50.836	28.911	23.609	9.234	84.853	53.111	43.563
3	Bahrain	3.183	92.962	63.554	52.917	0.161	54.654	36.619	28.550
4	Canada	2.478	29.715	17.164	13.352	3.445	38.835	26.931	21.153
5	Colombia	43.073***	12.911	7.081	5.165	1.480	35.413	24.079	18.966
6	Ecuador	11.518	39.907	24.089	17.521	36.130	55.409	43.042	36.366
7	Indonesia	5.708	59.172	42.519	35.641	1.015	57.304	38.879	31.838
8	Iran	3.855	23.793	13.405	8.805	8.429*	16.001	8.803	6.166
9	Kuwait	14.865	43.917	28.262	22.539	19.745	118.675	83.256	72.167
10	Malaysia	8.305	58.028	33.508	25.663	1.700	97.582	62.164	49.446
11	Nigeria	5.349	95.611	65.414	53.189	17.660	55.273	37.970	31.043
12	Norway	0.079	29.280	16.559	12.815	10.627	29.000	20.622	15.005
13	Oman	11.505***	10.755	7.068	4.980	0.008	65.206	40.304	32.996
14	Paraguay	0.626	43.881	27.553	20.198	2.721	64.651	46.769	38.673
15	S. Arabia	7.061	50.533	35.795	29.023	2.625	50.765	34.564	27.673
16	Venezuela	8.100*	17.523	10.066	6.665	9.703**	15.527	8.014	5.749

Note: *, "*, ${ }^{* * * *}$ indicate significance at the $0.01,0.05$, and 0.1 levels, respectively.
Source: Author

Appendix 2 Panel causality test results (GDP vs. Energy security)

CN	Countries	H_{0} : GDP does not cause ES				H_{0} : ES does not cause GDP			
		Statistic	Critical Values			Statistic	Critical Values		
			1\%	5\%	10\%		1\%	5\%	10\%
1	Algeria	8.187	20.655	14.152	10.924	3.360	57.123	40.728	34.091
2	Australia	0.405	61.483	41.742	33.460	19.443	49.851	32.686	26.905
3	Bahrain	0.772	79.633	54.634	44.991	1.185	64.187	50.210	40.847
4	Canada	21.652***	19.482	13.167	9.843	0.022	11.605	7.851	6.122
5	Colombia	0.000	6.995	4.068	3.024	38.780***	7.641	4.649	3.379
6	Ecuador	7.830	43.286	23.605	18.635	37.410**	43.485	29.475	24.950
7	Indonesia	0.660	68.950	45.708	34.279	30.155***	9.413	6.642	5.040
8	Iran	20.210***	16.968	9.780	6.718	191.734***	33.126	15.383	10.355
9	Kuwait	18.571**	27.629	18.338	15.051	5.835	26.121	17.959	14.849
10	Malaysia	18.904	59.414	42.138	34.113	34.278*	57.081	38.378	31.582
11	Nigeria	2.410	81.912	54.437	44.590	0.551	11.465	7.296	5.578
12	Norway	1.024	21.860	13.036	9.429	0.106	67.564	38.777	30.288
13	Oman	28.444***	7.608	4.611	3.328	16.885*	26.358	18.433	15.480
14	Paraguay	0.000	47.876	27.008	21.273	1.705	4.460	3.153	2.561
15	S. Arabia	47.123**	54.880	38.955	30.782	64.184***	22.884	14.420	10.877
16	Venezuela	9.784*	17.884	10.510	7.002	37.693***	24.833	14.544	9.730

Note: *, "*, *** indicate significance at the $0.01,0.05$, and 0.1 levels, respectively.
Source: Author

Appendix 3 Panel causality test results (Energy security vs. Energy export revenues)

CN	Countries	H_{0} : ES does not cause ENX				H_{0} : ENX does not cause ES			
		Statistic	Critical values			Statistic	Critical values		
			1\%	5\%	10\%		1\%	5\%	10\%
1	Algeria	1.608	55.294	40.516	34.085	1.785	63.047	43.557	37.420
2	Australia	11.899	45.168	30.379	23.932	0.000	80.675	46.004	36.068
3	Bahrain	0.928	74.738	53.798	44.457	0.813	52.156	31.666	25.094
4	Canada	6.535*	9.857	6.893	5.902	11.899**	15.741	8.536	6.203
5	Colombia	10.300**	18.307	9.130	6.246	0.285	10.508	6.868	5.346
6	Ecuador	0.454	48.784	30.499	23.741	2.982	57.404	43.809	36.369
7	Indonesia	4.598	16.261	9.935	7.639	0.472	64.508	43.976	34.045
8	Iran	0.058	50.209	22.552	15.392	15.368**	15.562	9.114	6.433
9	Kuwait	2.952	27.836	17.869	15.247	17.463	122.876	77.316	65.960
10	Malaysia	29.246*	49.675	31.466	25.125	5.972	82.185	50.852	40.986
11	Nigeria	5.036	12.279	7.199	5.782	13.823	46.121	32.434	24.425
12	Norway	7.486	65.512	40.879	30.402	0.107	13.937	7.422	5.487
13	Oman	17.393**	27.433	17.029	13.508	16.553**	18.442	10.867	8.166
14	Paraguay	4.144***	4.142	2.842	2.227	0.075	82.243	57.361	48.602
15	S. Arabia	9.341*	18.977	11.009	8.214	21.016	54.203	38.211	35.380
16	Venezuela	0.752	21.367	12.504	9.473	4.308	21.321	10.380	6.564

Note: *, "*, *** indicate significance at the $0.01,0.05$, and 0.1 levels, respectively.
Source: Author

[^0]: 1 For 2020, this figure is approximately 2 trillion dollars.

[^1]: 2 Econometric analysis was carried out by using Gauss21 econometrics package program and Nazlıoğlu's (2021) Gauss library.

