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The seismic radiation patterns associated with probing the earth’s subsur-
face are essentially anisotropic due to its ubiquitous stratified structure. This an-
isotropy seriously complicates formation imaging and data acquisition. This is 
most salient for deep-water subsalt reservoirs. Traditionally, point scatterers with 
isotropic radiation patterns are used in migration imaging, but in the survey de-
sign problem, these might lead to design errors caused by receivers being placed 
in poor locations with respect to the radiation pattern of the scattering structure. 
Here, we extend a framework which accounts for anisotropy in the scattered radi-
ation for optimal geophysical survey design purposes. The propagation medium is 
assumed to be attenuative. The locally dipping interfaces are modeled as a dis-
crete set of finite-size planar scattering elements. The general elastodynamic ex-
pressions for the sensitivity kernels, i.e., the vectors which mathematically repre-
sent the candidate observations, in the presence of the scattering elements are 
provided. The size of each element controls the width of its radiation pattern, 
which may in turn be used to characterize the uncertainty on the dip angle, thus 
complementing the information provided by the model-parameter uncertainties 
and ultimately leading to better geophysical survey designs.

Keywords: Bayesian optimal experimental design, dipping scatterers, anisotropic 
radiation, layered media, model covariance matrix

1. Introduction

Optimal experimental design (OED) is a forecasting problem: one seeks to 
predict which experimental design will yield the best estimates of model param-
eters from future measurements (Chaloner and Verdinelli, 1995; Atkinson and 
Donev, 1992). Much work has been done in this area of research and different 
authors have addressed different important aspects of the problem from different 
perspectives (for a review of geophysical OED see the review by Maurer et al., 
2010, and references therein). In particular, OED has been investigated as a 
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sequential augmentation problem (Wynn, 1970; Dykstra, 1971; Stummer et al., 
2002, 2004; Curtis et al., 2004; Ajo-Franklin, 2009; Coles and Morgan, 2009; 
Guest and Curtis, 2009, 2010), from an inverse-theoretic perspective (Haber et 
al., 2008; Bissantz et al., 2007), and as a Bayesian statistics problem (Chaloner 
and Verdinelli, 1995; van den Berg et al., 2003; Sebastiani and Wynn, 2000; 
Clyde, 2001; Coleman and Block, 2007; Chaloner and Larntz, 1989). OED has 
also been applied, among other areas, to waveform inversion (Moldoveanu et al., 
2013; Maurer et al., 2009; Gouveia and Scales, 1997, 1998; Rao et al., 2006; 
Tarantola, 1988; Virieux and Operto, 2009).

To complement the extensive work done in this area, we have proposed an 
efficient Bayesian greedy OED algorithm (Khodja et al., 2010) that aims to con-
struct an experiment by sequentially minimizing the determinant of the forecast 
posterior model covariance matrix, i.e., by maximizing the posterior Shannon in-
formation on the model. This design methodology not only takes advantage of the 
available prior information both on the model and on the data, but it also allows 
the treatment of large OED problems. This methodology has also been applied to 
the optimal maximization of model-parameter resolution for waveform imaging 
purposes (Djikpesse et al., 2012a). The benefits of the proposed method include 
the ability to account for source frequency bandwidth in the presence of poor sig-
nal-to-noise ratio due to attenuation. The model inhomogeneities to be imaged 
were modeled as a discrete set of point scatterers.

This straghiforward approach inevitably leads to a significant problem: The 
elastic radiation emanating from such scatterers is essentially isotropic while the 
stratified structure of the earth’s subsurface often gives rise to inhomogeneities 
for which scattering radiation is generally anisotropic (Kenneth, 1983). It is true 
that the spatial density of the point scatterers could be made large enough to 
model any complex structure, but no matter how fine the scattering-elements 
grid is, the isotropic nature of the scattered radiation could cause the design algo-
rithm to suggest receiver locations where no radiation is forecast. This is, for in-
stance, the case for most subsalt reservoirs, which are characterized by steep dip-
ping interfaces on which scattering radiation is typically anisotropic which 
seriously complicates formation imaging and data acquisition (Xiao et al., 2013; 
Baldock et al., 2012; Zhuo and Ting, 2011; Moldoveanu and Kapoor, 2009; 
Howard, 2007; Howard and Moldoveanu, 2012; Michell et al., 2006; Farmer et 
al., 1996). Recently, we have considered such deep-water field from offshore Gulf 
of Mexico from the standpoint of Bayesian OED. This field is a typical example of 
a challenging subsalt reservoir with steep dips lying beneath a complex salt 
structure. Originally, a wide azimuth (WAZ) survey was acquired over the reser-
voir, but the processing of the results revealed that the steep parts of the reser-
voir were left untouched by the survey. Illuminating those steep parts by the 
traditional approach (e.g., aerial acquisition) would have been too prohibitive 
with regard to cost (Moldoveanu and Kapoor, 2009). The inherently anisotropic 
nature of the scattered radiation in this case was accounted for by introducing a 
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discrete set of finite-size planar scattering elements in the 3D model of the field. 
The study resulted in an efficient design that optimally complements the WAZ 
survey while accounting for the steep dipping parts of the interface under consid-
eration and the associated uncertainties. Nevertheless, for the sake of simplicity, 
the study was limited to the acoustic case in the absence of attenuation.

In this article, we focus on the extension of the theoretical framework to ac-
count for seismic radiation anisotropy in Bayesian survey designs for subsurface 
imaging purposes. The fully elastodynamic case with attenuation is considered. 
Thus, the analytical expressions for the elastodynamic sensitivity kernels, i.e., 
the rows of the sensitivity matrix, in the presence of the scattering elements will 
be calculated. The size of each scattering element is used to control the width of 
its radiation pattern, which is conveniently used to characterize the uncertainty 
on the dip angle, thus complementing the information provided by the model-pa-
rameter uncertainties. We start in the background section by briefly reviewing 
the Bayesian OED methodology we want to complement to account for radiation 
anisotropy, then in the next section we present the analytical expressions for the 
elastodynamic sensitivity kernels incorporating the design scattering elements 
in attenuative media. In the numerical section we present and discuss simple 
examples that are meant to elucidate the behavior of the design algorithm after 
the inclusion of the scattering elements. Finally, we summarize our results in the 
conclusion section.

2. Background

Here we briefly review the Bayesian design methodology presented in Khodja 
et al. (2010), and Djikpesse et al. (2012a). For more details the reader is referred 
to these two references.

One traditional approach to optimal survey desing is based on the sensitivity 
matrix. The rows of the sensitivity matrix represent candidate observations and 
each collection of candidate observations represents a candidate experiment. 
Once the optimal design criterion has been defined, the collection of candidate 
observations that satisfy it represents an optimal experiment. We wish to find an 
experiment that is likely to provide information about the model parameters that 
will optimally complement the prior information. In particular, for a system lin-
earized around an informative prior mean model, our goal is to find the oberva-
tions represented by the optimal acquisition vectors  defined as

 ξ
ξ

opt ≡
( )

( )∈
argmax

X

det
det

C
C

, for a fixed |X|, (1)

wherein C is the prior model covariance matrix, C~ is the posterior model covari-
ance matrix, X is the set of all possible acquisition settings, and where || stands 
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for the cardinal and det(∙) for the determinant. An experiment obtained by means 
of this D-optimality criterion also maximizes the trace of the model resolution 
matrix.

For uncorrelated data noise Eq. (1) reduces to the simple iterative expression 
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tivity kernel of a candidate observation (i.e., a row in the sensitivity matrix). The 
C*-norm is defined as, γ γ γn n
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* , where H stands for the Hermitian 

conjugate and * for the complex conjugate.
Let V R 3 be a semi-infinite domain of interest in the earth’s subsurface 

which is bounded by a closed surface   = ∪0 ∞, where   = ∪0 ∞ is a traction-free sur-
face and   = ∪0 ∞ is a surface at infinity where the radiation condition holds. The do-
main of interest V is assumed to be characterized by a generally spatially vary-
ing mass density, ρ(x), and stiffness coefficients, cijkl(x), where x is the position 
vector in a Cartesian coordinate system. The stiffness coefficients are assumed to 
be complex quantities that satisfy the usual symmetries cijkl(x) = cjikl(x) = cklij(x) = 
cijlk(x) and whose imaginary parts are responsible for the attenuation of propa-
gating elastic waves (Toksöz and Johnson, 1981; Zhu and Tsvankin, 2006). The 
preceding symmetry relations reduce the rank-four stiffness tensor to a 6 × 6 ma-
trix that has only 21 independent elements, in the most general case.

In the frequency domain, the general equation governing elastodynamic phe-
nomena can be written as

 ω ρ ω ω ω2 x x x x x( ) ( )+ ∂ ( )∂ ( ) = ( )∑u c u si
j k l

j ijkl k l i, , ,
, ,

, (3)

where ui(x,ω) is the ith component of displacement at point x∈V and frequency ω, 
∂j ≡ ∂ / ∂ xj, and si(x,ω) the source term. This source term is defined in terms of the 
volume density of force fi(x,ω) and the volume density of moment Tij(x,ω) as

 s f Ti i
j

j ijx x x, , ,ω ω ω( )≡ ( )+ ∂ ( )∑ . (4)

The solution of Eq. (3) may be expressed as a function of the outgoing Green’s 
function in x x, ,' ω( ) as (Aki and Richards, 2002)

 u s di
V j

ij jx x x x x, , , ,ω ω ω( )=− ( ) ( )∫∑ ' ' '3 . (5)
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Now, let us assume that the propagation medium represented by the vector   
m x x x( )≡ ( ) ( ){ }( )ρ , cijkl  may be viewed as the superposition of a reference me-
dium represented by the vector m x x x0 0 0( ) ( ) ( )( )≡ ( ) ( ){ }( )ρ , cijkl  and a perturbation 
model represented by the vector ∆ ∆ ∆m x x x( )≡ ( ) ( ){ }( )ρ , cijkl  so that

 ρ ρ ρx x x( )= ( )+ ( )( )0 ∆ , 

 c c cijkl ijkl ijklx x x( )= ( )+ ( )( )0 ∆ . 
(6)

Under the Born approximation the scattered displacement fields can be written 
as 

 
∆ ∆u u di

V j
ij jx x x x x x, , , ,ω ω ω ω ρ( )= ( ) ( ) ( ) −′ ′ ′ ′∫∑ ( ) ( )2 0 0 3

 

 
− ∂ ( )  ( )∂ ( )∫ ∑ ( ) ( )

V j k l n
k in nklj l jc u d

, , ,

, , ,' ' ' ' ' 0 0 3x x x xω ω∆ xx', (7)

wherein in
0( ) ( )x x, ,' ω  is the outgoing Green’s function in the unperturbed medi-

um and ui
( ) ( ', )0 x   is the unperturbed field in the reference medium given by

 

 u s di
V j

ij j
0 0 3( ) ( )( )=− ( ) ( )∫∑x x x x x, , , ,ω ω ω ' ' ' (8)

Note that in writing Eq. (7) we have not assumed any particular source 
type nor have we assumed any particular structure for the inhomogeneities in 
the propagation medium (within the limits imposed by the Born approxima-
tion). Now, we wish to restrict Eq. (7) by assuming that the inhomogeneities 
are in fact a discrete set of one-dimensional or two-dimensional scattering 
elements.

3. Scattering elements for design purposes

In this section, we derive the general expressions for the elastodynamic sen-
sitivity kernels, i.e., the vectors which mathematically represent the candidate 
observations, in the presence of the scattering elements. The propagation medi-
um is assumed to be attenuative and the locally dipping interfaces are modeled 
as a discrete set of finite-size planar scattering elements.We also discuss how the 
size of each element controls the width of its radiation pattern, which may in 
turn be used to characterize the uncertainty on the dip angle, thus complement-
ing the information provided by the model-parameter uncertainties and ulti-
mately leading to better geophysical survey designs.
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For our survey design purposes it is sufficient to assume that the contrasts in 
elastic parameters are constant over the extent of the individual scattering ele-
ments, although they may vary from one element to another. Thus, the scatter-
ing potentials corresponding to M scattering elements with constant contrasts 
Drb and (Dcijkl)b, b = 1, 2, are given by

 
∆ ∆ρ ρ ψ

β
β βx x( )= ( )

=

( )∑
1

M
D ,

 

 
∆ ∆c cijkl

M

ijkl
Dx x( )= ( )

=

×( )
( )∑

β
β βψ

1

6 6

( ) , 

(9)

wherein ψ β
D( ) the ’s are indicator functions that encode the shape of the scattering 

elements. According to Huygens’s principle, a D-dimensional scatterer β
D( ), 

D = 1,2, may be viewed as consisting of a continuous set of point scatterers. Thus, 
the form factors may be defined as 

 ψ δβ β
β

D D D
D

d( ) ( ) ( )( )≡ − ( )( )( )∫x x y


Λ Λ , (10)

where δ(∙) stands for the Dirac delta and Λ(D) stands for the set of integration pa-
rameters that characterize the spatial extent of the scattering elements. For a 
line-segment β

1( ), Λ 1( ) is merely a real number while, when the scattering ele-
ments are two-dimensional disks β

2( ), Λ 2( ) takes on the form of a pair of real 
numbers: the first one spans the radial extent of the disks and the second one 
represents their sweeping angle (i.e., Λ 2 0 1 0 2( ) ≡ ( )∈ ×] [ ν φ π, , , , for instance). 
Substituting Eq. (10) into Eqs. (7) and taking into account the definition of 
ψ β

D( ) ( )x  yields
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This equation may be written concisely as 
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where { }∆m Mβ β1≤ ≤  are the mass density contrasts, { }∆m M Mβ β+ ≤ ≤ ×( )1 6 6  are the 
stiffness contrasts, and Gi b are the entries of a possibly complex N × (1 + 6 × 6) M 
sensitivity matrix. N and (1 + 6 × 6) M are the number of displacement observa-
tions and the number of model parameters, respectively. The entries of the sensi-
tivity matrix, Gi b, can be split into two categories: entries Gi β

ρ( ), which represent 
the contributions associated with the mass density contrasts ∆ρβ, and Gi

c
β
( ) which 

represent the contributions associated with the stiffness contrasts ( )∆cnklj β. They 
are given by 
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The explicit calculation of these matrix entries for simple cases (see appendi-
ces A and B) shows that the introduction of a spatial extent for the scattering ele-
ments manifests itself as an overall factor that multiplies the matrix entries of 
the point-scatterers case. This factor reduces to unity when the spatial extent 
vanishes and reproduces the effects of specular reflection when the spatial extent 
is much larger than the wavelength of the wave (see, e.g., Eqs. (25) and (26)). 
Thus, the spatial extent of the scattering structures could be used as a controlla-
ble parameter to characterize the uncertainty on the structural dip – a higher 
confidence in the dipping character of the scattering structures would translate 
into larger sizes for the scattering structures, thereby making the scattering 
more specular. For instance, in the 2D acoustic example discussed in appendix A 
a heuristic rule of thumb could be

 l dip~ ~φ σ− −1 1, (14)

where l is the length of the line-segment scatterer, f is a measure of the beam 
width which could be, for instance, the half-power beamwidth (HPBW) or the 
first-null beamwidth (FNBW) (Balanis, 2005), and σdip is the dip-angle standard 
deviation. Let us identify f with σdip. Introducing the normalized length 
0≤ ≡ <l l / λ ∞ and the normalized standard deviation 0 1≤ ≡ ≤σ σ πdip dip / , 
one can devise another simple expression that is more quantitatively meaningful 
than Eq. (14) and which has the correct asymptotic behavior, namely 

 
l

dip
≡ −

1 1
σ

. (15)
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Given a particular uncertainty on the dip, σ̄dip, Eq. (15) allows us to calculate 
the size of the scattering elements.

4. Numerical examples

We now present and discuss a set of simple synthetic examples whose pur-
pose is to elucidate the behavior of the OED algorithm after the scattering ele-
ments have been incorporated into it in an elastic attenuative setting.

In the first part of this study, we start by reviewing the acoustic case to clari-
fy additional aspects of the augmented algorithm. Our goal is to show how the 
OED algorithm reacts to the presence of scattered anisotropic acoustic radiation 
in a simple 2D model with line-segment scatterers. The particular dip-angle 
model of the line-segment scatterers is assumed to be based on prior information. 
The algorithm is expected to react to the presence of anisotropic radiation by sug-
gesting surveys where receivers are placed where scattered radiation is forecast.

Consider a 2D homogeneous reference model with velocity 2500 m/s. A 
20 × 20 array of point scatterers is superimposed on this model with a vertical 
and horizontal spacing of 15 m (Fig. 1a). The experimental setup consists of one 
source at the top center of the model and 295 receivers uniformly distributed 
around the model with a separation of 10 m. The prior model covariance matrix 
is assumed to be C = (2 × 10–4)2 I and the data covariance matrix is taken to be 
CD = (10–3 mPa)2 I, which is consistent with a noise level of 20% for a uniform scat-
tering strength Dm = 10–3 (see definition in Eq. (21)).

The results of the simulations are shown in Figs. 1b–1e. In Figs. 1b and 1c 
we show the best designs for 30 and 50 observations, respectively, suggested by 
the OED algorithm when the scattering elements are assumed to be point struc-
tures. In Figs. 1d and 1e we show the corresponding designs for horizontal scat-
tering elements with l = 20 wavelengths. The wave emitted from each source in-
teracts with all scatterers and the data collected at each receiver is the combined 
result of this interaction. Thus, the curves connecting sources and receivers in 
Figure 1 do not represent actual ray-paths; they are just a convenient way of 
showing which source-receiver pairs have been selected in the design. Also, note 
that n observations do not generally correspond to n unique source-receiver pairs. 
This is because the design might repeat observations in order to suppress antici-
pated noise.

In Figs. 1d and 1e, the extended line scatterers cause specular reflection and 
transmission to dominate. The algorithm avoids suggesting receiver locations 
where there is no scattered radiation or where this radiation is weak. This is to 
be contrasted with the survey depicted in Figs. 1b and 1c where the scattering 
elements are pointlike. There, the isotropic nature of the scattered radiation al-
lows the algorithm to suggest observations that optimally reduce the model un-
certainties by selecting more receiver locations along the sides of the model.
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The reason the OED algorithm appears to first favor observations for the line 
scatterers that correspond to receivers located on the top of the model is illus-
trated in Fig. 2. The reflected waves reinforce each other at the receivers located 
along the top of the model, providing more information on the scattering poten-
tial from each of these scatterers. Transmitted waves interact with fewer scatter-
ers and thus provide less information than the reflected waves. Furthermore, for 

Figure 1. 2D homogeneous reference model. (a) The experimental setup used to illustrate the main 
results. The red dots represent the scattering elements and the squares of the grid represent the 
model parameters. (b), (c) The first best 30 and 50 observations, respectively, suggested by the OED 
algorithm when the scattering elements are point structures. (d), (e) The first best 30 and 50 observa-
tions, respectively, suggested by the OED algorithm when the scattering elements are line-segments. 
The curves are not actual ray-paths, they are just meant to show which source-receiver pair was 
selected.

0 200 400 600 800 1000

– 500

– 400

– 300

– 200

– 100

0

z
(m

)

x (m)

0 200 400 600 800 1000

– 500

– 400

– 300

– 200

– 100

0

z
(m

)

x (m)

0 200 400 600 800 1000

– 500

– 400

– 300

– 200

– 100

0

z
(m

)

x (m)

0 200 400 600 800 1000

– 500

– 400

– 300

– 200

– 100

0
z
(m

)

x (m)

0 200 400 600 800 1000

– 500

– 400

– 300

– 200

– 100

0

z
(m

)

x (m)

a)

b)

d)

c)

e)



88 M. R. KHODJA ET AL.: ACCOUNTING FOR SEISMIC RADIATION ANISOTROPY IN BAYESIAN ...

reflected waves the algorithm preferentially selects receivers that are closer to 
the source because geometrical spreading would attribute these with higher sig-
nal-to-noise ratios.

To see how the algorithm behaves in the presence of attenuation, we show in 
Fig. 3 the design corresponding to the first best 55 observations in the simple 

Figure 2. What happens when the scatterers are large enough for specular reflection to take place? 
Illustration of the basic physical process responsible for the favoring by the OED algorithm of receiv-
ers collecting reflected radiation over receivers collecting transmitted radiation when the scatterers 
are large enough for specular reflection to take place. This is essentially the reason the observations 
that correspond to receivers on the surface were selected first in the example depicted in Figs. 1d and 
1e.

Figure 3. The effect of attenuation. The first best 55 observations when an attenuation factor of 
Q = 75 is assumed. The line at the bottom represents the location of the line-segment scatterers with 
individual lengths l = 7,000 m. The different colors of the curved lines showing the source-receiver 
pairs encode the wavelengths corresponding to the selected observations: purple (l = 50 m ), blue 
(l = 100 m ), green (l = 150 m), and red (l = 200 m ). There are no purple or blue curves.
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situation when the scattering elements are a single row of line-segments of 
length l = 103 m. Four wavelengths were used l = 50, 100, 150, and 200 m and 
the attenuation factor was assumed to be Q = 75 (see Xu and Stewart (2006) for 
comparison). The algorithm rendered a design which was a mix of different fre-
quencies which clearly represents a trade-off between frequency and offset. The 
algorithm starts by selecting the receivers that correspond to the minimum off-
set, i.e., those that are closer to the source, using the 150-m waves. Afterwards, 
when balancing wavelength (frequency) and offset favors a longer wavelength, 
the algorithm selects observations that correspond to the 200-m waves. Note that 
the algorithm exhibits a maximum threshold in the used frequencies. This is a 
desirable feature that allows the designer to use less costly sources (e.g., lower 
frequencies) while not compromising the quality of the survey.

5. Conclusion

The use of point scatterers to model the stratified structure of the earth’s 
subsurface is inherently marred by the isotropic nature of the radiation scattered 
from these point structures and could cause the surveys to have receiver loca-
tions where no radiation is forecast. Here, we have augmented a Bayesian meth-
odology for designing seismic surveys to address this issue. The locally dipping 
interfaces have been modeled as a discrete set of one-dimensional and two-di-
mensional scattering, or design, elements. We have provided the general formu-
las giving the entries of the design matrix that incorporates those elements. To 
account for prior information on model dips, we have also used the sizes of these 
design elements to characterize the uncertainty on the dip angle thus comple-
menting the information provided by the model-parameter uncertainties leading 
to better survey designs. We have illustrated our main results with simple nu-
merical examples.
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SAŽETAK

Proračun za anizotropiju seizmičkog zračenja kod dizajna 
istraživanja u Bayesovom smislu

Mohamed R. Khodja, Michael D. Prange i Hugues A. Djikpesse

Prostorna razdioba seizmičkog zračenja koje se koristi za proučavanje unutrašnjosti 
Zemlje je anizotropna zbog Zemljine slojevite građe. Ta anizotropija znatno komplicira 
razlučivanje struktura i prikupljanje podataka, što je najizraženije pri istraživanju 
podmorskih nalazišta ispod solnih naslaga. Korištenje točkastih raspršivača s izotrop-
nom razdiobom zračenja, koji se tradicionalno koriste u prospekciji, može dovesti do 
ozbiljnih pogrešaka ako se pri planiranju istraživanja prijemnici postave na 
neodgovarajuće pozicije u odnosu na razdiobu zračenja istraživane strukture. U ovom 
radu razrađujemo optimalni sustav kojim se raspršeno zračenje može uzeti u obzir pri 
planiranju istraživanja. Sredstvo kroz koje se rasprostiru valovi je atenuativno, a lo-
kalno nagnute granice među slojevima su modelirane diskretnim skupom plošnih 
raspršivača konačne veličine. Prikazane su opće elastodinamičke jednadžbe za kernele 
razlučivosti, tj. za vektore koji matematički prikazuju moguća opažanja ako postoje 
raspršivači. Veličina pojedinog raspršivača određuje širinu njegove razdiobe zračenja 
kojom se može izraziti nepouzdanost kuta nagiba plohe, što daje dodatne informacije o 
nepouzdanostima parametara modela, te u konačnici vodi boljem planiranju geofizičkih 
istraživanja.

Ključne riječi: оptimalan dizajn istraživanja u Bayesovom smislu, nagnuti raspršivači, 
anizotropna radijacija, slojevito sredstvo, kovarijanca parametara modela
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Appendix A. Two-dimensional acoustic survey designs

In this appendix we calculate the sensitivity kernels associated with 1D scat-
tering elements to see how their expressions differ from the sensitivity kernels 
associated with the isotropic point-scatterer case. The equation governing the 
propagation of the P-waves takes on the form

 ∇ + ( )+
( )

( )
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where we have defined the complex propagation constant 
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with Q(x) being the attenuation parameter and q(x) the dimensionless scattering 
potential. Let us also assume that the background velocity and the attenuation 
parameter Q are constant, i.e., c(x) = c and Q(x) = Q, and that the wave source is 
a point source located at x(S). The scattered wave is recorded at a receiver located 
at x(rec). The scattered pressure field is thus given by (Beylkin, 1985; Miller et al., 
1987)

 ∆p
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where  0( ) ( )x x, ,' ω  is the background Green’s function.
Let us assume that our design problem is a 2D problem. In this case we have 
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which is the leading term in the asymptotic expansion of the background 2D 
Green’s function. The use of the 2D Green’s functions rather than the 3D Green’s 
functions is adopted merely for convenience. None of the main results of this 
study is affected by the dimensionality of the Green’s functions. The main differ-
ences between the 2D and 3D kernels resides in the factor of ω versus ω2 (Beylkin, 
1985), and the different geometric spreading factors.

Consider the case of S point sources emitting waves that scatter off M regu-
larly separated point scatterers to be recorded at R receivers. We would like to 
discuss the effects of adding dip angles to the scatterers. Our goal is to extend our 
methodology to associate radiation patterns with the scatterers used in the mi-
gration imaging problem. Traditionally, point scatterers with isotropic radiation 
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patterns are used in migration imaging, but in the survey design problem, these 
might lead to design errors caused by receivers being placed in poor locations 
with respect to the radiation pattern of the scattering structure. Our new ap-
proach accounts for these patterns by replacing each point scatterer by a small 
scattering structure (e.g. a disk in 3D or a line segment in 2D) that would yield 
the correct radiation pattern for the corresponding dips in the prior model. Let us 
first consider the case when the scatterers in a 2D model are line segments in-
stead of point scatterers. The generalization to the 3D case where the scatterers 
are small reflecting disks is straightforward.

For a line-segment β
1( ) whose center is located at ab, Λ 1 1 2 1 2( ) ≡ ∈ −[ ]ν / , /  and

 y a uβ β β βν ν( )= + l , (20)

where lb is the line-segment length and ub a unit vector along its direction. This 
leads to the scattering potential

 q m l d
M

x x a u( )= − −( )
= −
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β β β βδ ν ν
1 1 2

1 2

∆
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/

, (21)

Now, substituting this result into Eq. (18) leads to the following expression 
for the sensitivity kernels 
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wherein R x aα α β
s s( ) ( )≡− +  and R x aα α β

rec rec( ) ( )≡ − . Since one may picture large 
curved or flat reflectors as a collection of contiguous small reflectors let us make 
the following approximations l R s

β α/ ( )
1 and l R rec

β α/ ( )
1. Consequently, one 

obtains
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and 
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Substituting Eq. (23) and Eq. (24) into Eq. (22) yields the following sensitivity 
kernels 
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Evidently, when  the approximate result, Eq. (25), and the integral, Eq. (22), 
coincide and reduce to the point-scatterer result. The final expression, Eq. (25), 
may also be written in terms the unit vector, , normal to the line-segment as 
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Note the presence of the extra sinc-function terms in the expressions of the 
sensitivity kernels given by Eq. (26) as opposed to the isotropic point-scatterer 
case sensitivity kernels. Because of the sinc function, as the scale of the scatterer 
approaches a wavelength, the scattered field becomes more specular. Thus, the 
field configurations tend toward the patterns expected in the limiting case of a 
large thin diffractor where most of the energy undergoes either a specular reflec-
tion or a direct transmission. (Recall that our scatterers are only thin inclusions, 
hence refraction cannot take place).

Appendix B. Homogeneous isotropic backgrounds

In this appendix, we calculate the sensitivity kernels associated with 2D 
scattering elements in a 3D homogeneous and isotropic medium. The results are 
used to plot the normaized amplitudes of the sensitivity kernels associated with 
density contrast D r, and Lamé parameters D l, D m in Figs. 4, 5, and 6.

Green’s dyadic for a homogeneous, isotropic medium is given by (Ben- 
-Menahem and Singh, 1981; Snieder, 2002)
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where l and m are the usual Lamé parameters, kα ω ρ λ µ≡ +( )/ 2 , 
kβ ω ρ µ≡ / , and h0

1( ) ⋅( ) and h2
1( ) ⋅( ) are the spherical Hankel functions of the 

first kind.
For such a medium the contrasts in the stiffness coefficients are given by 

 ∆ ∆ ∆cnklj nk lj nl kj nj kl= + +( )λδ δ µ δ δ δ δ  (28)
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Figure 4. Polar plots of the normalized sensitivity-kernel amplitudes associated with density con-
trast Dρ. The setup consists of one source-receiver pair and one scattering disk of radius r. The plots 
are all in the xy-plane except for the SV-SH plots which are in the yz-plane. The dotted curves corre-
spond to 2r = 0.02 wavelengths, the dashed curves correspond to 2r = 0.6 wavelengths, and the con-
tinuous curves correspond to 2r = 1.2 wavelengths.
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Let us consider the simple case of a single scattering element which is as-
sumed to be a disk of radius r. Substituting Eqs. (27) and (28) into Eq. (11) yields 
the following sensitivity kernels

 G
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Figure 5. Polar plots of the normalized sensitivity-kernel amplitudes associated with the Lamé pa-
rameter contrast Dl. Note the absence of SV-SH plots. The setting is the same as that of Fig. 4.
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Figure 6. Polar plots of the normalized sensitivity-kernel amplitudes associated with the Lamé pa-
rameter contrast Dm. The setting is the same as that of Fig. 4.
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where we have introduced the unit incident-wave polarization vector ℘ inc( ) and 
the unit scattered-wave polarization vector ℘ sca( ). In the examples presented 
here, the setup consists of one source-receiver pair and one scattering disk of ra-
dius r located at the origin of coordinates and oriented in such a way that the 
x-axis is perpendicular to its plane. The source is assumed to be located on the 
x-axis to the left of the scattering disk. The receiver is assumed to be in the far 
zone. For simplicity the polarization vectors were taken to be

 ℘P
inc T( ) = ( , , )1 0 0  (32)

 ℘P
sca rec

rec
Tx y( ) ( )= ≡x

x
1 0( ) ( , , )  (33)

 ℘SV
inc T( ) = ( , , )0 1 0  (34)

 ℘SV
sca

rec
Ty x( ) = −

1 0
x( ) ( , , )  (35)

 ℘SH
sca T( ) = ( , , )1 0 0  (36)

Consequently, the plots are all in the xy-plane except for the SV-SH scatter-
ing plots which are in the yz-plane. The results are shown in Figs. 4, 5, and 6. 
The absence of SV-SH plots in Fig. 5 is due to the vanishing of the energy scat-
tered in the yz-plane in the case of a purely tensile contrast. Clearly, the anisot-
ropy radiation patterns can significantly differ when accounting for the size of 
the scatterer.




