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This study presents the spatial interpolation procedure from snow depth 
measurements at weather stations implying the following stages: (1) Spatial 
interpolation at 1 km × 1 km resolution of the mean multiannual values (2005-
2015) corresponding to each month, computed from the data extracted from the 
climatological database; (2) Computation of the daily deviations against the 
multiannual monthly mean for every day and year over 2005–2015 and their 
spatial interpolation; (3) Spatio-temporal datasets were obtained through merg-
ing the two surfaces obtained in stages 1 and 2. The anomalies were considered 
to be the ratio between the daily snow depth values and the climatology. The 
spatial variability of the data used in the first stage was accounted for through 
the use of a series of predictors derived from the digital elevation model (DEM). 
To plot the maps with the climatological normals (multiannual means), the 
Regression-Kriging (RK) spatial interpolation method was used. In order to 
choose the optimum method applied in spatializing deviations, four interpolation 
methods were tested using a cross-validation procedure: Multiquadratic, Ordi-
nary Kriging (separated and pooled variograms) and 3d Kriging.

Keywords: snowpack; spatial interpolation; Kriging; multiquadratic; cross-val-
idation; Romania.

1. Introduction

The realization of high-quality climatic data is essential for realistically as-
sessing the impacts of climate variability and change of a region (Dumitrescu 
and Birsan, 2015; Dumitrescu et al., 2016). Gridded data are useful for evaluat-
ing the performance of regional climate models, and they serve as input data for 
spatially distributed agrometeorological and hydrological models (Tveito et al. 
2006; Birsan, 2013).

Long-term climatic variability over Romania are well documented in various 
recent papers, pointing to an increase in drought and aridity (Cheval et al., 
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2014a, b, 2017; Dascălu et al., 2016) and in annual warm-related temperature 
extremes (e.g., Birsan et al., 2014; Dobrinescu et al., 2015; Marin et al., 2014; 
Rimbu et al., 2015). Changes since 1961 show increasing temperatures in all 
seasons except autumn (Dumitrescu et al., 2015), an increasing rain shower 
frequency (Busuioc et al., 2016; Manea et al., 2016), decreasing trends in snow 
depth (Birsan and Dumitrescu, 2014) and in wind speed (Birsan et al., 2013). 

Snow cover has major effects on surface albedo and energy balance, and 
represents a major storage of water. The snowpack strongly influences the over-
lying air, the underlying ground and the atmosphere downstream. Snow cover 
duration influences the growing season of the vegetation at high altitudes. Snow 
cover is a climatic parameter occurring exclusively in the cold season in Romania, 
being strongly conditioned by air temperature and precipitation type, strongly 
affecting the surface albedo, the energy balance, the water resources and the 
hydrological regime (e.g., Birsan, 2015).

This paper presents the methodology for constructing a gridded dataset of 
daily snow depth over Romania measured during the cold season (December–
March), from 2005 to 2015.

The spatial interpolation procedure implies completing the two stages below: 
(1)  Spatial interpolation at 1 km × 1 km spatial resolution of the mean mul-

tiannual values (2005–2015) corresponding to each cold season month, 
using data extracted from the climatological database;

(2)  Computation of daily deviations against the multiannual monthly mean 
for each day and year from the same period, and combining the maps 
representing the deviations with the climatic maps.

The spatio-temporal datasets were obtained through merging the two sur-
faces obtained in stages 1 and 2. The anomalies were considered to be the ratios 
between the daily values and the monthly climatology.

2. Data and methods

2.1. Data

The main data used in this work consist of daily snow depth values recorded 
at 155 meteorological stations during the cold season between December 2005 
to March 2015. The stations are located at elevations ranging from 1 to 2506 
m.a.s.l., and have a good spatial coverage across the country, as well as a good 
altitudinal distribution (Fig. 2). All weather stations (Tab. 1) have full data re-
cords over the study period and were quality controlled. The dataset contains no 
reconstructed records – like extensions or missing values filled by means of 
computational algorithms.
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Figure 1. (a) The meteorological stations used in the present study. (b) The cummulative frequency 
functions of the altitude of the meteorological network (red) and the altitude of the country 1 km 
Digital Elevation Model (DEM).

a)

                         b)
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Table 1. List of the meteorological stations involved in the trend analysis, with their geographic coor-
dinates, altitude, and multi-annual mean monthly snow depth (2005–2015).

Station 
ID

Station 
name

Longitude 
(°)

Latitude 
(°)

Altitude 
(m a.s.l.)

Mean snow depth (cm)
Dec Jan Feb Mar

408800 ADAMCLISI 27.96708685 44.0885409 156 1 3.2 4 0.1
606705 ADJUD 27.17193378 46.10497436 101 3.5 4.1 6.9 0.9
604335 ALBA IULIA 23.56497369 46.06421292 252 1.4 2 3.5 0.4
359521 ALEXANDRIA 25.35433507 43.97823168 85 1.7 5.9 5.1 0.5
608121 ARAD 21.35521862 46.13385055 117 1.1 0.8 3.3 0.5
635658 BACAU 26.91406725 46.53214746 183 5.5 8.4 11.1 3.9
428307 BACLES 23.11460051 44.47651622 313 1.4 4.7 5 1.9
740330 BAIA MARE 23.49323787 47.66112768 224 3.1 4.5 8.2 2.1
452230 BAILE HERCULANE 22.41799279 44.88136802 190 1.3 3.5 7.4 1
401321 BAILESTI 23.33273765 44.02960523 59 1.8 4.6 7.6 1
634322 BAISOARA 23.31182227 46.53576855 1357 12.5 18.5 28.5 22.3
536437 BALEA LAC 24.61629602 45.60422396 2037 78.9 131.7 183.4 226.7
523108 BANLOC 21.13797416 45.38305095 83 2 1.6 4.1 0.4
605537 BARAOLT 25.59739847 46.08104168 508 3.6 5.5 6.1 0.8
614740 BARLAD 27.64597711 46.23328751 168 2.9 3.3 4.1 1
700733 BARNOVA (RADAR) 27.58416224 47.01261684 395 8.2 12.9 16.5 8
654438 BATOS 24.64696015 46.88644023 450 2.5 4 5.3 1.5
347357 BECHET 23.94568627 43.79005613 39 1.6 4.5 7.1 0.7
533642 BISOCA 26.71186450 45.54916417 851 7.2 8.8 19.1 8.5
708430 BISTRITA 24.51555219 47.14937051 374 2.7 4.1 6.3 1.8
611355 BLAJ 23.93675021 46.17873184 342 0.8 1 3.7 0.6
538416 BOITA 24.27310565 45.65326161 523 1.5 4.4 6.5 1.7
659236 BOROD 22.59183633 46.99395328 333 1.1 1.5 3.5 0.9
741640 BOTOSANI 26.64713891 47.73587871 160 4.5 5.8 8 1.1
455200 BOZOVICI 22.00773783 44.91865121 256 1.5 3 6.1 0.5
512755 BRAILA 27.92119899 45.20685343 17 2.1 4.3 5.5 0.4
542532 BRASOV 25.52772077 45.69613319 535 3.2 5.5 5.1 0.9
639518 BUCIN 25.29808384 46.64927031 1290 30 47.3 71.5 75.2
430613 BUCURESTI AFUMATI 26.21429086 44.50038552 90 1.8 4.9 5.9 1
430608 BUCURESTI BANEASA 26.07968642 44.51072385 90 2 5.1 6.6 1
425606 BUCURESTI FILARET 26.09532212 44.41235543 82 2 6.5 9.2 1.4
509649 BUZAU 26.85323649 45.13293184 89 1.3 2.4 4.3 0.3
359257 CALAFAT 22.94756876 43.98524562 61 1.9 4.7 7.8 1.4
412721 CALARASI 27.33978003 44.20601637 22 1.9 4.1 5.7 0.3
706515 CALIMANI (RETITIS) 25.24776979 47.09817701 2022 28.7 39.5 62.7 85.1

622303 CAMPENI (BISTRA) 23.04195345 46.36410439 621 3.4 4 6.5 2.2
517545 CAMPINA 25.73494434 45.1439892 461 2.6 5 9 1.8
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Station 
ID

Station 
name

Longitude 
(°)

Latitude 
(°)

Altitude 
(m a.s.l.)

Mean snow depth (cm)
Dec Jan Feb Mar

517507 CAMPULUNG  
MUSCEL 25.03812971 45.27505407 690 2.5 3.9 7.8 3.2

406421 CARACAL 24.35881328 44.10044411 105 1.7 6.4 7.9 0.9
525215 CARANSEBES 22.22784657 45.41743522 241 2 1.5 4.2 0.7
656555 CEAHLAU TOACA 25.95151254 46.97775945 1897 25.1 43.5 62.1 73.1
421803 CERNAVODA 28.04517747 44.34590422 90 1.2 2.9 4.9 0
632130 CHISINEU CRIS 21.54326795 46.51884784 96 0.8 0.8 3.3 0.5
647334 CLUJ-NAPOCA 23.57289952 46.77805966 417 1.7 2.8 4.7 1
413838 CONSTANTA 28.64702037 44.21407320 13 0.4 1.6 0.7 0
444820 CORUGEA 28.34352163 44.73458896 221 0.2 0.8 1 0
722657 COTNARI 26.92720859 47.35854811 289 6.1 6 9.4 1.6
414352 CRAIOVA 23.86850048 44.31046723 192 2.1 6.6 9.5 1.1
518231 CUNTU 22.50304974 45.30081051 1456 23.4 44.3 76.7 78.7
509441 CURTEA DE ARGES 24.67127420 45.17909091 449 2.1 3.3 7 1.1
812637 DARABANI 26.57508418 48.19512074 259 6.4 8.5 12.6 2.7

500432 DEDULESTI- 
MORARESTI 24.57167643 45.01661345 550 3.7 7 11.5 2.4

709352 DEJ 23.90045935 47.12827194 240 2.6 4 6.5 1.7
553254 DEVA 22.90037882 45.86523795 230 0.9 0.9 1.9 0.5
444417 DRAGASANI 24.23870812 44.66575461 275 2.3 5.2 7.8 1

438238 DROBETA TURNU 
SEVERIN 22.62761176 44.62679852 77 1.5 3.7 5.2 0.6

614436 DUMBRAVENI 24.59317787 46.22815420 323 2.3 3.5 5.1 1

639210 DUMBRAVITA DE 
CODRU 22.17280803 46.64493673 586 3.2 3.4 9 3.8

551459 FAGARAS 24.93680407 45.83653909 435 2.2 3.5 4.2 0.5
541712 FOCSANI 27.20130534 45.68777697 47 3.1 5.1 10.5 2.1
528518 FUNDATA 25.27307088 45.43175707 1376 12.2 22.5 32.5 26.1
428632 FUNDULEA 26.52505125 44.45322764 67 2.4 6.1 8.9 1
530801 GALATI 28.03380058 45.47316338 71 2.9 4 5.6 0.5
352557 GIURGIU 25.93422078 43.87547042 24 1.9 5.8 5.7 0.4
511912 GORGOVA 29.15827387 45.17710656 3 0.2 1 1.3 0
445718 GRIVITA 27.29608598 44.74105792 51 0.8 2.9 8.6 0.5
441900 GURA PORTITEI 29.00045229 44.69008267 4 0.1 0.8 0.8 0
617220 GURAHONT 22.33489688 46.27950832 177 1.6 1 2.3 0.4
441757 HARSOVA 27.96501275 44.69195657 41 0.5 1.3 2.7 0.1
646207 HOLOD 22.11387211 46.78889456 163 1.5 0.8 3.6 0.5
651305 HUEDIN 23.03414742 46.85760813 566 2.6 3.1 6.3 1.6

Table 1. Continued.
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Station 
ID

Station 
name

Longitude 
(°)

Latitude 
(°)

Altitude 
(m a.s.l.)

Mean snow depth (cm)
Dec Jan Feb Mar

710736 IASI 27.62986822 47.17118906 103 3.8 6 6.7 1.9
737439 IEZER 24.65062962 47.60283971 1792 13.4 21.5 26.9 41.5

541601 INTORSURA  
BUZAULUI 26.05830390 45.66854534 707 6.1 10.5 11.5 3

547042 JIMBOLIA 20.70395027 45.78120011 79 0.7 0.7 3.5 0.6
642540 JOSENI 25.51414214 46.70599974 747 7.3 8.5 11.9 4.7
446853 JURILOVCA 28.87788675 44.76631771 36 0.1 0.7 2.5 0
551621 LACAUTI 26.37708527 45.82418134 1778 34.2 63.4 108.3 122.8
541154 LUGOJ 21.93486205 45.68687373 168 2 1.1 4.7 0.6
505904 MAHMUDIA 29.07487145 45.08741590 175 0.3 1.6 2.9 0.1
349835 MANGALIA 28.58889581 43.81639105 1 0.5 2.1 0.5 0.1
415816 MEDGIDIA 28.25285990 44.24346248 67 1 2 2.3 0
622544 MIERCUREA CIUC 25.77417211 46.37157943 667 6.8 9 14.2 5.7
444127 MOLDOVA VECHE 21.63480975 44.72279567 82 1.1 1.5 4.3 0.3
650727 NEGRESTI (VASLUI) 27.44369453 46.83832816 134 3.5 6.2 6.3 1.8
747356 OCNA SUGATAG 23.94208347 47.77732798 508 3 4.5 6.9 3.3

618518 ODORHEIUL  
SECUIESC 25.29332105 46.29704279 532 1.8 3.5 5.1 1.2

404638 OLTENITA 26.63861373 44.07498393 14 2.1 6.5 6 0.5
703156 ORADEA 21.89754503 47.03601962 136 0.8 0.7 3.4 0.6
502141 ORAVITA 21.71204220 45.03905829 309 1.7 2.4 8.1 1.5
501252 PADES (APA NEAGRA) 22.86105375 44.99713632 260 3.5 6.7 11.2 3.1
539357 PALTINIS 23.93399847 45.65742560 1462 18.8 33.5 48.6 45.7
523328 PARANG 23.46462206 45.38768614 1559 18.1 32.8 52.9 52
519622 PATARLAGELE 26.37102399 45.32492469 293 1.8 2.6 5.8 0.7
536625 PENTELEU 26.41136110 45.60293306 1633 23.7 36.6 60.4 53.8
525323 PETROSANI 23.37825439 45.40661039 607 3.5 4.7 8.2 2
656621 PIATRA NEAMT 26.39108318 46.93392250 360 5.1 6.5 10 2.5
452452 PITESTI 24.86750921 44.84923476 332 1.9 4 6.5 1.1
457600 PLOIESTI 25.98892923 44.95603747 172 2 3.5 6.4 0.9
719507 POIANA STAMPEI 25.13604440 47.32492031 931 7.5 11.1 15.7 11
511349 POLOVRAGI 23.81014792 45.16576349 525 2.4 6 10 2.7
530535 PREDEAL 25.58503687 45.50656525 1096 15.3 31.7 44.5 31
751555 RADAUTI 25.89205125 47.83809571 387 5.1 7 10.4 2.9
523703 RAMNICU SARAT 27.04004090 45.39090463 155 2.3 3.7 8.3 1.1
506422 RAMNICU VALCEA 24.36434679 45.08912725 242 0.9 2.4 4.2 0.5
518155 RESITA 21.88855542 45.31470699 279 1.7 1.5 5.5 1.1
655650 ROMAN 26.91339410 46.96933778 218 4.5 5.5 8.1 2.1

Table 1. Continued.
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Station 
ID

Station 
name

Longitude 
(°)

Latitude 
(°)

Altitude 
(m a.s.l.)

Mean snow depth (cm)
Dec Jan Feb Mar

619308 ROSIA MONTANA 23.14063120 46.31789822 1198 8.7 12.1 23.7 19.3
407500 ROSIORII DE VEDE 24.98023756 44.10752732 111 1.1 4.6 3.9 0.3
722205 SACUIENI 22.09613632 47.34446092 124 1.1 1.3 3.7 0.5
604037 SANNICOLAU MARE 20.60316254 46.07163314 85 1 0.9 2.8 0.5
645410 SARMASU 24.16139046 46.74783378 397 3 4.5 6.8 1.3
748253 SATU MARE 22.88878229 47.72176829 128 1.3 1.6 4.1 0.5
557334 SEBES (ALBA) 23.54305247 45.96444435 267 0.9 1.5 2 0.2
507158 SEMENIC 22.05736497 45.18173383 1432 25.7 45.8 74.9 80.7

454936 SFANTU GHEORGHE 
(DELTA) 29.60056995 44.89788160 1 0.1 0.6 1.2 0

552548 SFANTU GHEORGHE 
(MUNTE) 25.80365983 45.87183011 525 3.7 5.9 6.4 0.8

548409 SIBIU 24.09297678 45.78960481 453 2 3.7 4.2 0.6

758355 SIGHETUL  
MARMATIEI 23.90596510 47.93956747 283 1.8 5.7 7.8 2.7

523530 SINAIA 1500 25.51571273 45.35525599 1510 23.3 38.2 59.7 59.2
616140 SIRIA 21.66438116 46.26518273 473 1.6 1.6 5.8 1.3
426421 SLATINA 24.35604254 44.44249260 172 1.7 4.9 7.9 1
433724 SLOBOZIA 27.38504422 44.55302996 53 1.4 2.6 4.1 0.2
641237 STANA DE VALE 22.62498402 46.69012519 1108 23.4 40.3 61.2 58.6
749713 STEFANESTI STANCA 27.22130911 47.83246931 110 3.4 3.8 5.8 0.8
632229 STEI (PETRU GROZA) 22.46809247 46.52831717 278 1.6 1.8 3.5 0.7
436447 STOLNICI 24.79132240 44.56302854 225 1.5 3.9 6.6 1
739615 SUCEAVA 26.24214328 47.63313390 366 5.8 7.4 11.9 2.8
509940 SULINA 29.76044896 45.14869404 3 0 0 0 0
728247 SUPURU DE JOS 22.78520612 47.45537856 166 1 1 2.7 0.5
515231 TARCU 22.53428015 45.28133520 2180 28.9 56.5 91 107.9
456526 TARGOVISTE 25.42719989 44.92983528 285 1.9 3.8 6 1.2
502317 TARGU JIU 23.26088200 45.04095796 204 1.3 3.3 7.8 1
726352 TARGU LAPUS 23.87382703 47.43990113 375 3.9 7.5 12.5 6
453344 TARGU LOGRESTI 23.71023619 44.87841799 271 2.2 4.6 8.2 1.3
632432 TARGU MURES 24.53535631 46.53357831 317 3.1 3.7 5.3 0.7
714623 TARGU NEAMT 26.38076511 47.21237637 385 5.4 6.6 9.7 2.5
617637 TARGU OCNA 26.64258627 46.27295943 245 4 3.6 5.5 0.8
600608 TARGU SECUIESC 26.11661582 45.99316541 571 4.5 6.5 7.8 1.4

622414 TARNAVENI  
(BOBOHALMA) 24.22754861 46.36036358 525 3.2 4.1 6.1 2.5

551716 TECUCI 27.41053329 45.84181804 57 1.8 2.7 4.2 0.7
546115 TIMISOARA 21.25965761 45.77139806 86 1.4 1 3.5 0.3
439534 TITU 25.58070721 44.65315439 174 1.9 4.5 7.1 1.2

Table 1. Continued.
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Station 
ID

Station 
name

Longitude 
(°)

Latitude 
(°)

Altitude 
(m a.s.l.)

Mean snow depth (cm)
Dec Jan Feb Mar

655522 TOPLITA 25.36148301 46.92665148 690 7.5 10.1 13.5 6
511849 TULCEA 28.82564167 45.19074534 5 0.9 2.3 2.4 0.1
635347 TURDA 23.79283447 46.58333693 431 2.7 3.1 5.2 1.5
346452 TURNU MAGURELE 24.87996008 43.76047002 25 1.5 7.2 8 0.5
443639 URZICENI 26.65870290 44.72201440 65 1.7 2.7 4.6 0.2
602213 VARADIA DE MURES 22.15253875 46.01953169 156 1.4 0.7 3.3 0.7
527527 VARFUL OMU 25.45822182 45.44607647 2506 49.1 69.5 89.6 111.1
639744 VASLUI 27.71598538 46.64634703 121 4.3 6.5 6.5 2.4
417530 VIDELE 25.53849985 44.28316981 118 1.8 4.5 4.9 0.5
646247 VLADEASA 1800 22.79578515 46.75955615 1840 9.4 15.5 19.7 19.9
711305 ZALAU 23.04835118 47.19517188 303 1.4 2.2 4.4 0.9

340521 ZIMNICEA 25.35509607 43.66183202 39 1.8 7.5 7.5 0.5

Also, the auxiliary data listed further, derived from the Digital Elevation 
Model (DEM) were used for interpolating the multiannual values: altitude, mean 
altitude in a 20-km radius, latitude, distance to the Black Sea and distance to 
the Adriatic Sea.

The purpose of the DEM-derived predictors was to take into account both 
the altitudinal and latitudinal distribution of snow depth.  The direct influence 
of the major water bodies as the main source of moisture was taken into account 
by including as predictors the distances to the Black Sea and to the Adriatic Sea, 
respectively (Dumitrescu et. al., 2016). The monthly regression models were also 
improved by adding two more predictors, namely the grids of mean multiannual 
monthly precipitation and mean multiannual monthly temperature, computed 
for the same period (2005–2015).

2.2. Methods

To interpolate the maps with the climatological normals (multiannual 
means), the Regression-Kriging (RK) spatial interpolation method was used. To 
choose the optimum method for gridding the deviations, four interpolation meth-
ods were tested through the cross validation procedure: Multiquadratic (MQ), 
Ordinary Kriging with separate (sepOK) and pooled semivariograms (pvOK) and 
3D Kriging (K3d).

RK is a multivariate method that include one or more variables with a spa-
tially continuous distribution (digital elevation model, satellite images, etc.) in 
the computations. It results from summing the surface determined through the 
least squares method (applied to multiple regression) and the surface obtained 
through spatially interpolating the regression residuals, using the Kriging meth-

Table 1. Continued.
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od. With this method, the first step consists in statistically validating the deter-
ministic model, in the sense of verifying the intensity of the relationships be-
tween predictors and the dependent variable. The best regression model could 
be determined applying stepwise regression. In the case of RK method, the ma-
trix of the multiple regression grid points represents the large-scale variability 
of the analysed parameter modelled by the explanatory variables. The interpo-
lated residuals represent the local peculiarities of the target variable, modelled 
with the help of the semivariogram (Hengl et al., 2007):

 ( ) ( ) ( )0 0
1 1

´ ´
p N

k k i i
k i

Z s q s e sβ λ
= =

= ⋅ + ⋅∑ ∑  (1)

where ´
kβ  are the coefficients of the regression model, kq  is the value of the predic-

tor in the point localised through the s0 coordinates for which a new value is esti-
mated and li are the weighting coefficients of the residuals of e(si) regression with 
si coordinates. Regression coefficients can be obtained either through the simple 
method of the least squares or through applying the generalised regression model.

MQ belongs to the class of exact interpolation methods called Radial Base 
Functions (RBF), which resembles very much to the Kriging family class only 
differing through that it does not benefit from the contribution of the data spatial 
structure analysis through the semivariogram. Johnston et al. 2001 defines the 
general form of this category of interpolators as follow:

 ( ) ( )0 0 1
1

´
N

i i n
i

Z s s sω φ ω +
=

= −∑  (2)

where f(r) is the radial base function, 0ir s s= −  is the radial distance between 
the point for which a new s0 value is computed and the points with si measured 
values and w symbolises the weights to be estimated.

The value of the weight of each point used in interpolation results after solv-
ing a system of equations using the matrix computation of the type:
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with f being the matrix of the distance between the points with known values 
to which a radial base function is applied; z denotes the vector with the dis-
tances between the location chosen for estimation and the points with measure-
ments, to which the same radial base function is applied; w are the estimated 
weights and wn+1 are the residuals.

MQ radial function is given by the relationship

  ( ) ( ) 1/22 2r rφ σ
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= +  (4)
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The smoothing parameter σ can be chosen through computing the minimum 
sum of squared errors resulted from the application of the cross validation pro-
cedure or directly by the user.

OK computes the weights on the basis of the functions that also take for 
computation the spatial configuration of data (Isaaks and Srivastava, 1989). The 
first step in the interpolation through the OK method is the analysis of the spa-
tial interdependence of the dataset, performed through constructing the semi-
variogram of the sampled points (Pebesma, 2004):

 ( ) ( ) ( ) 2

1

ˆ 1
2

jN

j i i
j i

h Z s Z s h
N

λ
=

 = − + ∑
where Nj is a set of pairs of locations separated by the distance h and h  = the 
average of the distances between the Nj distinct pairs.

The assessment in a new location is based on regression against local neigh-
borhood data of the surrounding data points, weighted according to the spatial 
covariance values (Johnston et al., 2001):
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OK weighting functions take for computation both distance and the geographical 
arrangement of data. The value of the weights of each point used in interpolation 
results from solving a system of equations through a matrix calculus of the type:
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matrix C representing the covariance’s between the points with known values, 
vector c being made up of the covariances between the points with known values 
and the point with unknown value, λ = vector of the Kriging weighting coefficients 
and m = Lagrange multiplier utilized in minimizing errors through the relation-
ship:
  2
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i
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In this work two versions of OK method were investigated: (1) with daily 
estimation of the variograms (separated fitted daily semivariograms – sepOK), 
and (2) with pooled semivariograms (one single variogram is constructed relying 
on all data, treating each day as a copy of the same spatial dependence structure 
– pvOK) (Gräler et al., 2013). 

3dK is a three-dimensional extension of the two-dimensional Kriging method, 
which considers time to be the third orthogonal dimension. The predictions from 
the space-time cube are based only on one semivariogram model for the period 
of analysis, while the classical Kriging interpolation models require one semi-
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variogram per time unit (Pebesma, 2013). Because good results of this method 
are achieved when an isotropic covariance model is used, the time dimension 
must be rescaled in order to align to the spatial directions (Hiemstra et al., 2009). 

2.3. Validation

To choose the optimum method for interpolating the deviations, the leave-
one-out cross validation was applied. This implies the elimination one by one of 
the values from the set of observed values and determining the value of the point 
excluded on the basis of the other observed data. The difference between the P 
estimated data and the O measured ones represents the ε experimental value:

 ( ) ( )i i iP s O sε = −

Quantification of differences between estimations and observed data was 
performed with the help of the error measurement indicators:

–  mean error (ME) represents the means of the differences between esti-
mated and measured values respectively:
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–  mean absolute error (MAE) represents the means of the absolute differ-

ences between estimated and measured values respectively:
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–  root mean square error (RMSE) is sensitive to the presence of large errors, 

the squaring process attributing the residuals disproportionate weights:
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The box-plot and Taylor-type diagram were also used in the quantitative 
analysis of results yielded by the four interpolation methods applied in interpo-
lating the ratios (Taylor, 2001).

3. Results

3.1. Climatological maps

In order to achieve the gridded climology, the mean multiannual monthly 
snow depth data (1 December 2005 – 31 March 2015) was used. Maps represent-
ing the climatological normals were obtained with the RK method. 
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Due to the existence of the collinearity effect, the predictors were subjected 
to the filtering process through the principal component analysis. Filtering the 
predictors through the principal component analysis (PCA) is performed through 
transforming the initial variables into a new set of variables, uncorrelated and 
of a smaller size. The new data set thus obtained contains most part of the 
original dataset variability (Fig. 2). 

Figure 3 depicts the explained variance of the seven principal components 
for each month. It can be seen that the first three components explain the main 
characteristics regarding the spatial variability, representing the strongest con-
figurations in explaining 90% or more of the variance present in the predictor 
fields, hence only those were taken for computation of the climatological maps. 

Figure 2. Maps of the predictors used in the study: (a) predictors derived from DEM; (b) mean 
monthly multiannual precipitation in mm; (c) mean monthly multiannual temperature in °C.

(a)

 

(b)

 
 

 
 
 
 

(c)
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Prior to applying the RK method the statistical relationships between snow 
depth and the auxiliary variables (PCA predictors) for each month were identified. 
Through applying the backward type stepwise regression there can be selected for 
each case (month) taken apart the statistically significant predictors (Tab. 2). 

Figure 3. Variance explained by the principal components (PCA) computed from the set of predictors 
obtained from the numerical altimetric model

Table 2. Snowpack depth: predictors selected through using the stepwise regression and R² determina-
tion coefficients. 

Month Predictors R2

log1p(Jan) PC1 + I(PC12) + PC3 + PC5 0.860

log1p(Feb) PC1 + I(PC12) + PC3 + PC4 + PC5 0.862

log1p(Mar) PC1 + PC2 + PC3 + PC5 0.908

log1p(Apr) PC1 + I(PC12) + PC4 + PC5 0.922

log1p(Oct) PC1 + I(PC12) 0.868

log1p(Nov) PC1 + I(PC12) + PC2 + PC3 + PC5 0.914

log1p(Dec) PC1 + PC2 + PC3 + PC4 + PC5 0.854

                        December                                                  January

 
 

                         February                                                    March
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Analyzing the frequency distributions it was noted that the snow depth had a 
positive skewed distribution. Therefore, they were transformed to a close normal 
distribution by applying the natural logarithm function. The log1p() function 
from R language was used, which can also be applied when the data series con-
tain values of zero. The estimations were back-transformed to real values with 
a help of expm1() function (https://stat.ethz.ch/R-manual/R-devel/library/base/
html/Log.html).

The predictive power of the regression models varies from month to month, 
with smallest R-squared value in January, and the largest value in March. For 
all months more than 70% of the spatial variability of snowpack depth being 
explained by the predictors. For some months the nonlinear influence of some 
predictors was quantified in the regression model by using a 2nd degree polyno-
mial regression model. 

In order to verify the interpolation results, a cross-validation was performed 
for the climatological maps for each month. The results are presented in Fig. 4, 
together with the MAE, RMSE and CORR between the original and the cross-
validation values.

Figure 4. Plots of the original and the cross-validation values for the four months. 
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From analyzing the maps constructed with RK method (Fig. 5), it can be seen 
that the highest values are recorded in the closing month of the cold season, be-
ing generated by persisting below zero temperatures at high altitudes, which 
favours constant accretion of snow.

3.2. Daily gridded dataset
At this stage a number of interpolation methods were tested in order to find 

the optimum interpolation method for daily anomalies: Multiquadratic (MQ), 
Ordinary Kriging – separate (sepOK) and pooled variograms (pvOK) – and 3D 
Kriging (K3d). For the sepOK method the semivariograms were automatically 
estimated through the use of the automap R package (Hiemstra et al., 2009). For 
the pvOK and  K3d methods the variograms were fitted by using the fit.vario-
gram function from gstat R package (Pebesma, 2013).

Since there are regions where the mean multiannual snowpack depth is 
equal to zero, at the stations located on lower altitudes, a 1 cm value was added 
to the multiannual means prior to computing the daily anomalies.

Figure 5. Mean monthly snow depth (cm), December – March, 2005–2015.
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The cross validation procedure was applied to the anomalies computed over 
the period 1 December 2014 – 31 March 2015. According to Fig. 6, estimations 
performed with the four methods are very similar, a difference being apparent 

Figure 6. Mean Box-plot type diagram of daily anomalies (Dec 2014–Mar 2015), ME (left), MAE 
(middle) and RMSE (right) computed through using the original datasets against those estimated 
through the cross validation procedure using MQ, sepOK, pvOK and K3d interpolation methods.

Figure 7. Taylor-type diagram of daily deviations obtained through the cross validation procedure 
for the four interpolation methods (MQ, sepOK , pvOK and K3d).
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with the help of RMSE indicators, and ME that points out the superior estima-
tions performed with K3d method.

The Taylor diagrams (Fig. 7) confirm that the best estimates are provided 
by K3d method, regardless the month analyzed. pvOK obtains comparable re-
sults, with nearly the same computed values for Pearson’s correlation coefficient 
and slightly larger standard deviation values. sepOK has the poorest accuracy 
in terms of the three computed indicators. Note that all methods underestimate 
the variability of the observed data, the poorest performance being computed for 
the March month, when the snowpack depth value are greater than 0 only in the 
mountain regions.

Due to the good results in interpolating ratios and to the fewer steps required 
for producing the maps, K3d method was chosen to generate daily anomaly maps. 
The final daily snowpack depth maps were generated by multiplying the ratio 
maps with those representing the monthly climatology.

Using gridded daily data regarding the snowpack depth, constructed with 
the help of the K3d method, the monthly maximum snowpack depth was com-

Figure 8. Maximum monthly snow depth (2005–2015). 



292    A. DUMITRESCU ET AL.: A ROMANIAN DAILY HIGH-RESOLUTION GRIDDED DATASET ...

puted in every grid point (Fig. 8). The highest values of this parameter corre-
spond to the high mountain areas (more than 200 cm starting from January), 
persisting till March due to the negative mean temperatures. A considerable 
snowpack (deeper than 50 cm) can also be found in the extra-Carpathian areas 
as a consequence of the blizzard episodes specific to January and February.

4. Conclusions

Using an interpolation procedure that implies completion of a number of 
stages, there were obtained the gridded datasets for the snowpack depth values. 
Those were constructed at 1000 m × 1000 m spatial resolution, using meteoro-
logical records from 2005 to 2015, only for the months December, January, Feb-
ruary and March.

In the first stage, the monthly climatology maps were constructed based on 
a multivariate geostatistical model based on the RK method. This can take for 
computation in the process of spatialization one or more variables with a con-
tinuous spatial distribution. The purpose of the DEM-derived predictors was to 
take into account both the altitudinal and latitudinal distribution of snow depth. 
The direct influence of the major water bodies as the main source of moisture 
was also accounted for by using as predictors the distances to the Black Sea and 
to the Adriatic Sea, respectively. The monthly regression models were also im-
proved by adding two more predictors: the multiannual monthly mean of pre-
cipitation and temperature grids, computed for the same period (2005–2015). In 
order to choose the optimum combination of potential predictors, the stepwise 
regression was used, selecting in the interpolation process only those predictors 
which are statistically significant for each analyzed case (month).

The second stage implied spatial interpolation of the daily deviations against 
the monthly normals. In view to choose the optimum interpolation method, four 
spatialization methods were tested. Through using the cross validation proce-
dure and computing some error indicators, conclusion was drawn that the best 
estimates are obtained through the 3d Kriging (which includes time as the third 
dimension), hence this method was applied in interpolating the anomalies. 
Through combining the maps with the daily anomalies with those rendering the 
monthly normals, daily snow depth maps were constructed.

Using the gridded daily data, other parameters may be computed: number 
of days with snowpack, the first and last day with snowpack, the maximum 
snowpack depth, etc.

Maps obtained within this stage supply an overall picture of the analyzed 
variables, however with a precision directly influenced by the scale at which 
those were performed, by the spatial estimation errors specific to the geostatisti-
cal methods and by the density of the measurement points (weather stations 
operated by the National Meteorological Administration). In certain areas, where 
peculiar climatic conditions are specific and where no meteorological measure-
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ments are performed, it is recommended to achieve detailed studies regarding 
the spatio-temporal variability of the parameters of interest stressing the spatio-
temporal local development character of the meteorological phenomena.
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SAŽETAK

Gridovi fine prostorne rezolucije dnevnih visina snijega 
za Rumunjsku (2005.–2015.)

Alexandru Dumitrescu, Marius-Victor Birsan i Ion-Andrei Nita

Ova studija prikazuje proceduru prostorne interpolacije mjerenja dubine snijega na 
meteorološkim postajama koja podrazumijeva sljedeće faze: (1) prostorna interpolacija pri 
rezoluciji od 1 km ´ 1 km srednjih višegodišnjih vrijednosti (2005.–2015.), koja se provodi 
s podacima iz klimatološke baze; (2) izračunavanje dnevnih odstupanja od višegodišnjeg 
mjesečnog srednjaka za svaki dan i godinu tijekom razdoblja od 2005. do 2015. i njihova 
prostorna interpolacija; (3) prostorno-vremenski skup podataka dobiven je združivanjem 
procjena dobivenih u fazi 1 i 2. Odstupanja su definirana kao omjeri  dnevnih vrijednosti 
dubine snijeg i klimatološkog srednjaka. Prostorna varijabilnost podataka korištenih u 
prvoj fazi objašnjena je korištenjem niza prediktora izvedenih iz digitalnog modela visina 
(DEM). Karte klimatoloških normala (višegodišnji srednjaci) izrađene su metodom pros-
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torne interpolacije zvanom regresijski kriging (RK). Za odabir optimalne metode za pros-
tornu interpolaciju odstupanja, testirane su četiri metode interpolacije i ocijenjene pomoću 
postupka poprečne validacije: multikvadratična, obični kriging (razdvojeni i skupni vario-
grami) i 3D kriging.

Ključne riječi: snježni pokrivač, prostorna interpolacija, kriging, multikvadratična, 
poprečna validacija, Rumunjska
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