Challenges in obtaining high-quality data from a custom-made panel for the next generation sequencing (NGS) using Ion Torrent GeneStudio™ S5 platform

Authors

  • Lana Salihefendić Alea Genetic Center, Bosnia and Herzegovina and Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International Burch University, Bosnia and Herzegovina
  • Adna Ašić Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International Burch University, Bosnia and Herzegovina
  • Ivana Čeko Alea Genetic Center, Bosnia and Herzegovina
  • Dino Pećar Alea Genetic Center, Bosnia and Herzegovina
  • Larisa Bešić Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International Burch University, Bosnia and Herzegovina
  • Naida Mulahuseinović Alea Genetic Center, Bosnia and Herzegovina
  • Amra Džuho Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International Burch University, Bosnia and Herzegovina
  • Laura-Severina Köhn Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International Burch University, Bosnia and Herzegovina
  • Rijad Konjhodžić Alea Genetic Center, Bosnia and Herzegovina

Keywords:

COVID-19, next-generation sequencing, Ion Torrent GeneStudio™ S5, immunological response

Abstract

The goal of this part of the study was to optimize the sequencing procedure for 16 human genes and their regulatory regions that might be associated with differential immunological response to COVID-19. The study was performed on 60 COVID-19 patients from the General Hospital of Tešanj, Bosnia and Herzegovina, categorized into three groups of mild, moderate, and severe clinical manifestation, based on the diagnosis by the residential physician. Target coding sequences and their regulatory regions were amplified for the following genes: HLA-A, HLA-B, HLA-C, ACE2, IL-6, IL-4, TMPRSS2, IFITM3, IL-12, RIG-I/DDX58, IRF-7, IRF-9, IL-1B, IL-1A, CD55, and TNF-α. DNA was isolated from the whole blood samples stored at -20°C for six months using QIAamp® DNA Mini Kit according to manufacturer’s instructions. Since NGS analysis of target genomic regions was performed on the Ion Torrent GeneStudio™ S5 platforms, libraries were prepared using Ion AmpliSeq™ Library Kit Plus according to manufacturer’s instructions in a protocol optimized for low-quality DNA. Due to dissatisfactory sequencing results, further protocol optimization steps were employed through separating two primer pools, increasing the number of PCR cycles, and decreasing the annealing temperature for the primer pool which showed poorer amplification results. In the end, 36 samples produced optimal results, while the remaining 24 samples will be re-sequenced following repeated sample collection and DNA isolation, accompanied by additional protocol modifications.

References

Alahmad, B., Al-Shammari, A. A., Bennakhi, A., Al-Mulla, F. & Ali, H. Fasting Blood Glucose and COVID-19 Severity: Nonlinearity Matters. (2020). Diabetes Care, 43(12), 3113-3116.

Asselta, R., Paraboschi, E. M., Mantovani, A., & Duga, S. (2020). ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging, 12(11), 10087–10098. doi:https://doi.org/10.18632/aging.103415.

Baj, J., Karakuła-Juchnowicz, H., Teresiński, G., Buszewicz, G., Ciesielka, M., Sitarz, E., Forma, A., Karakuła, K., Flieger, W., Portincasa, P., & Maciejewski, R. (2020). COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. Journal of Clinical Medicine, 9(6), 1753. doi:https://doi.org/10.3390/jcm9061753.

Behjati, S., & Tarpey, P. S. (2013). What is Next Generation Sequencing? Archives of Disease in Childhood: Education and Practice Edition, 98(6), 236-238. doi:10.1136/archdischild-2013-304340.

Chacon-Cortes, D. F., & Griffiths, L. (2014). Methods for extracting genomic DNA from whole blood samples: current perspectives. Journal of Biorepository Science for Applied Medicine, 2014(2), 1-9. doi:https://doi.org/10.2147/BSAM.S46573.

Chan J. F., Yuan S., Kok K. H., To K. K., Chu H., Yang J., Xing, F., Liu, J., Yip, C. C.Y., Poon, R. W. S., Tsoi, H. W., Lo, S. K. F., Chan, K. H., Poon, V. K. M., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C. C., Chen, H., Hui, C. K. M. & Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet, 395, 514–523. doi:https://doi.org/10.1016/S0140-6736(20)30154-9.

Chapman, S. J., & Hill, A. V. (2012). Human genetic susceptibility to infectious disease. Nature Reviews: Genetics, 13(3), 175–188. doi:https://doi.org/10.1038/nrg3114.

de Lang, A., Osterhaus, A. D., & Haagmans, B. L. (2006). Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology, 353(2), 474–481. doi:https://doi.org/10.1016/j.virol.2006.06.011.

Forth, L. F., & Höper, D. (2019). Highly efficient library preparation for Ion Torrent sequencing using Y-adapters. BioTechniques, 67(5), 229–237. doi:https://doi.org/10.2144/btn-2019-0035.

Lingeswaran, M., Goyal, T., Ghosh, R., Suri, S., Mitra, P., Misra, S., & Sharma, P. (2020). Inflammation, Immunity and Immunogenetics in COVID-19: A Narrative Review. Indian Journal of Clinical Biochemistry: IJCB, 35(3), 260–273. doi:https://doi.org/10.1007/s12291-020-00897-3.

Lipworth, B., Chan, R., & Kuo, C. R. (2020). Predicting Severe Outcomes in COVID-19. The Journal of Allergy and Clinical Immunology in Practice, 8(8), 2582–2584. doi:https://doi.org/10.1016/j.jaip.2020.06.039.

Luo, H., Tang, Q. L., Shang, Y. X., Liang, S. B., Yang, M., Robinson, N. & Liu, J. P. (2020). Can Chinese Medicine Be Used for Prevention of Corona Virus Disease 2019 (COVID-19)? A Review of Historical Classics, Research Evidence and Current Prevention Programs. Chinese Journal of Integrative Medicine, 26(4), 243–250. doi:10.1007/s11655-020-3192-6.

Mardan‐Nik, M., Saffar Soflaei, S., Biabangard‐Zak, A., Asghari, M., Saljoughian, S., Tajbakhsh, A., Meshkat, Z., Ferns, G.A., Pasdar, A., & Ghayour‐Mobarhan, M. (2019). A method for improving the efficiency of DNA extraction from clotted blood samples. Journal of Clinical Laboratory Analysis, 33(6), e22892. doi:https://doi.org/10.1002/jcla.22892.

Sandmann, S., de Graaf, A. O., van der Reijden, B. A., Jansen, J. H., & Dugas, M. (2017). GLM-based optimization of NGS data analysis: A case study of Roche 454, Ion Torrent PGM and Illumina NextSeq sequencing data. PloS one, 12(2), e0171983. doi:https://doi.org/10.1371/journal.pone.0171983.

Shin, S., Kim, Y., Chul Oh, S., Yu, N., Lee, S. T., Rak Choi, J., & Lee, K. A. (2017). Validation and optimization of the Ion Torrent S5 XL sequencer and Oncomine workflow for BRCA1 and BRCA2 genetic testing. Oncotarget, 8(21), 34858–34866. doi:https://doi.org/10.18632/oncotarget.16799.

Tagliaferro, S. S., Zejnelagic, A., Farrugia, R., & Wettinger, S. B. (2021). Comparison of DNA extraction methods for samples from old blood collections. BioTechniques, 70(5), 243-250. doi:https://doi.org/10.2144/btn-2020-0113.

Trowsdale, J., & Knight, J. C. (2013). Major histocompatibility complex genomics and human disease. Annual Review of Genomics and Human Genetics, 14, 301–323. doi:https://doi.org/10.1146/annurev-genom-091212-153455.

Wohlhieter, C. A., Uddin, F., Quintanal-Villalonga, À., Poirier, J. T., Sen, T., & Rudin, C. M. (2021). An optimized NGS sample preparation protocol for in vitro CRISPR screens. STAR Protocols, 2(2), 100390.

Downloads

Published

2022-12-16