THE KINEMATICS OF USAIN BOLT’S MAXIMAL SPRINT VELOCITY

Authors

  • Milan Čoh University of Ljubljana Faculty of Sport Ljubljana
  • Kim Hébert-Losier University of Waikato Faculty of Health, Sport, and Human Performance Adams Centre for High Performance
  • Stanko Štuhec University of Ljubljana Faculty of Sport Ljubljana
  • Vesna Babić University of Zagreb Faculty of Kinesiology http://orcid.org/0000-0001-9849-2389
  • Matej Supej University of Ljubljana Faculty of Sport Ljubljana

Abstract

This study investigated the maximal sprint velocity kinematics of the fastest 100 m sprinter, Usain Bolt. Two high-speed video cameras recorded kinematics from 60 to 90 m during the men 100 m final at the World Challenge in Zagreb, Croatia. Despite a relatively slow reaction time (194 ms), Bolt won in 9.85 s (mean velocity: 10.15 m/s). His fastest 20-m section velocity was 12.14 m/s, reached between 70 to 90 m, and used a 2.70-m long stride and 4.36 strides/s frequency. At maximal velocity, his contact and flight times were 86 and 145 ms, and vertical ground reaction force equal to 4.2 times body weight (3932 N). The braking and propulsion phase represented 37 and 63% of ground contact, with his centre of mass exhibiting minor reductions in horizontal velocity (2.7%) and minimal vertical displacement (4.9 cm). Bolt's maximal sprint velocity and international dominance stem from advantageous anthropometrical characteristics, coordinated motor abilities, power generation capacities, and effective technique. This study confirms that his maximal velocity is achieved using a relatively long stride, minimal braking phase, high vertical ground reaction force, and minimal vertical displacement. This study is the first in-depth biomechanical analysis with segmental reconstruction of Bolt's maximal sprinting velocity.

Keywords: 100 m sprint; athletics; biomechanics; sport performance; sprint running 

References

Arribas, C. (2012, 6 August). Con el rabillo del ojo a 45 por hora, El País. Retrieved from http://deportes.elpais.com/deportes/2012/08/06/juegos_olimpicos/1344284896_730368.html

Barrow, J. D. (2012). How Usain Bolt can run faster - effortlessly. Significance, 9(2), 9-12. doi: 10.1111/j.1740-9713.2012.00552.x

Beneke, R., & Taylor, M. J. D. (2010). What gives Bolt the edge-A.V. Hill knew it already! Journal of Biomechanics, 43(11), 2241-2243. doi: 10.1016/j.jbiomech.2010.04.011

Brown, L. E., & Ferrigno, V. (2015). Training for Speed, Agility & Quickness (3rd ed.). Champaign, IL: Human Kinetics.

Brughelli, M., Cronin, J., & Chaouachi, A. (2011). Effects of running velocity on running kinetics and kinematics. Journal of Strength & Conditioning Research, 25(4), 933-939. doi: 10.1519/JSC.0b013e3181c64308

Charles, J. D., & Bejan, A. (2009). The evolution of speed, size and shape in modern athletics. Journal of Experimental Biology, 212(15), 2419-2425. doi: 10.1242/jeb.031161

Čoh, M., Milanović, D., & Kampmiller, T. (2001). Morphologic and kinematic characteristics of elite sprinters. Collegium Antropologicum, 25(2), 605-610

Denny, M. W. (2008). Limits to running speed in dogs, horses and humans. Journal of Experimental Biology, 211(24), 3836-3849. doi: 10.1242/jeb.024968

Donati, A. (1995). The development of stride length and stride frequency in sprinting New Studies in Athletics, 10(1), 51-66

Eriksen, H. K., Kristiansen, J., Langangen, Ø., & Wehus, I. (2009). How fast could Usain Bolt have run? A dynamical study. American Journal of Physics, 77(3), 224-228. doi: 10.1119/1.3033168

International Association of Athletics Federations. (2011). 100 metres men IAAF World Challenge Zagreb 2011. Retrieved from http://www.iaaf.org/competitions/iaaf-world-challenge/iaaf-world-challenge-zagreb-2011-4713/results/men/100-metres/race/result

Gollhofer, A., & Kyröläinen, H. (1991). Neuromuscular control of the human leg extensor muscles in jump exercises under various stretch-load conditions. International Journal of Sports Medicine, 12(1), 34-40

Graubner, R., & Nixdorf, E. (2011). Biomechanical analysis of the sprint and hurdles events at the 2009 IAAF World Championships in Athletics. New Studies in Athletics, 26(1/2), 19-53

Hébert-Losier, K., Mourot, L., & Holmberg, H. C. (2015). Elite and amateur orienteers' running biomechanics on three surfaces at three speeds. Medicine & Science in Sports & Exercise, 47(2), 381-389. doi: 10.1249/mss.0000000000000413

Hollings, S. C., Hopkins, W. G., & Hume, P. A. (2012). Environmental and venue-related factors affecting the performance of elite male track athletes. European Journal of Sport Science, 12(3), 201-206. doi: 10.1080/17461391.2011.552640

Hommel, H. (2009). Biomechanics Report WC Berlin 2009 Sprint Men. Darmstadt, Germany. Retrieved from DLV Scientific Research Project.

Hunter, J. P., Marshall, R. N., & McNair, P. J. (2004). Interaction of step length and step rate during sprint running. Medicine & Science in Sports & Exercise, 36(2), 261-271. doi: 10.1249/01.MSS.0000113664.15777.53

Hunter, J. P., Marshall, R. N., & McNair, P. J. (2005). Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. Journal of Applied Biomechanics, 21(1), 31-43

Ito, A., Fukuda, K., & Kijima, K. (2008). Mid-phase movements of Tyson Gay and Asafa Powell in the 100 metres at the 2007 World Championships in Athletics. New Studies in Athletics, 23(2), 39-43

Komi, P. V. (2000). Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. Journal of Biomechanics, 33(10), 1197-1206

Lehmann, F., & Voss, G. (1997). Innovationen fur den Sprint und Sprung: "ziehende" Gestaltung der Stützphasen - Tiel 1. Leistungssport, 6, 20-25

Linthorne, N. P. (1994). Wind assistance in the 100m sprint. Track Technique, 127, 4049-4051

Maćkała, K., Fostiak, M., & Kowalski, K. (2015). Selected determinants of acceleration in the 100m sprint. Journal of Human Kinetics, 45, 135-148. doi: 10.1515/hukin-2015-0014

Maćkała, K., & Mero, A. (2013). A kinematics analysis of three best 100 m performances ever. Journal of Human Kinetics, 36, 149-160. doi: 10.2478/hukin-2013-0015

Mann, R., & Sprague, P. (1980). A kinetic analysis of the ground leg during sprint running. Research Quarterly for Exercise and Sport, 51(2), 334-348. doi: 10.1080/02701367.1980.10605202

Mero, A., & Komi, P. V. (1986). Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. European Journal of Applied Physiology and Occupational Physiology, 55(5), 553-561. doi: 10.1007/bf00421652

Mero, A., Komi, P. V., & Gregor, R. J. (1992). Biomechanics of sprint running. Sports Medicine, 13(6), 376-392. doi: 10.2165/00007256-199213060-00002

Morin, J. B., Jeannin, T., Chevallier, B., & Belli, A. (2006). Spring-mass model characteristics during sprint running: Correlation with performance and fatigue-induced changes. International Journal of Sports Medicine, 27(2), 158-165. doi: 10.1055/s-2005-837569

Taylor, M. J. D., & Beneke, R. (2012). Spring mass characteristics of the fastest men on earth. International Journal of Sports Medicine, 33(8), 667-670. doi: 10.1055/s-0032-1306283

Winter, D. A. (2005). Biomechanics and Motor Control of Human Movement (3rd ed.). Hoboken, NJ: Wiley.

Downloads

Published

2018-10-30

How to Cite

Čoh, M., Hébert-Losier, K., Štuhec, S., Babić, V., & Supej, M. (2018). THE KINEMATICS OF USAIN BOLT’S MAXIMAL SPRINT VELOCITY. Kinesiology, 50(2), 172–180. Retrieved from https://hrcak.srce.hr/ojs/index.php/kinesiology/article/view/5579

Issue

Section

Articles

Most read articles by the same author(s)