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Invasive occurrence and abundance changes  
of Armadillidium vulgare (Latreille, 1804)  
in Hungarian roadside verges

Abstract

Background and purpose: The impact of invasive species in ecosystems 
is an important problem worldwide and the spreading of invader species are 
affected exceedingly by linear infrastructure. Primarily the aim of our in-
vestigation was to studied how the invasion of the species impacts the isopod 
diversity of roadside verges. Secondly, we determined what attributes of li-
near infrastructure affect on mass occurrence by the species. 

Materials and methods: Double-glass pitfall traps were established 30 
localities along highways and 4 localities along main roads in Hungary 
between 2011 and 2016. To studied what attributes of roads affect the 
abundance of A. vulgare we considered seasons, adjacent areas, road edge 
proximity, leaf-litter depth, the age of highway, vegetation type and mowing.

Results: We collected a total of 18 isopod species. The A. vulgare was the 
most abundant and frequently encountered species in both road types, whi-
ch represented 89% of the total isopod catches. The high abundance of the 
species negatively correlated with isopod diversity. The invasive nature of 
this species is promoted by summer season, the proximity of arable fields, 
intermediate distance from the road, leaf-litter at a depth of 0 cm and the 
young age of highways. On mainroad verges the highest abundance was in 
the non-mown sections of the arid grassland sites.

Conclusions: Our results suggest that this species is likely to adversely 
impact ecosystem function of roadside verges in Hungary. Different land 
use, water supply, surrounding landscapes, habitat structure, vegetation, 
biogeographical context and human activities along road verges influence 
the invasiveness of A. vulgare. 

INTRODUCTION

Roadside verges function as prime habitats for several native, exotic 
and invasive animal and plant species (1, 2, 3, 4). Roads provide 

not only refuges for protected and endangered species in agriculturally-
dominated landscapes but also function as invasion pathways for arthro-
pods (5, 6, 7, 8). However, roads also exert significant negative effects 
on communities, wildlife populations and ecosystems of surrounding 
habitats (9). The presence of roads and traffic may alter the chemical 
environment, modify animal behaviourand provide dispersal routes for 
species (1). Linear infrastructure, vehicles and roadside verges may be 
important elements in determining the spatial spread of an organism’s 
distribution (6, 10). In heavily disturbed and modified habitats such as 
highways, invasive species have a chance to adapt and spread along 
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2) We compared the abundance of A. vulgare based on 
seasons in highway verges. We assumed that the maxi-
mum number of individuals will peak abundance in au-
tumn because of its semelpar reproduction (18). 

3) We studied the effect of adjacent areas of highway 
verges on A. vulgare abundance. Our hypothesis was that 
this species prefers disturbed open habitats compared to 
other isopod species which prefer wet forested habitats, 
because of the species is an indicator of anthropogenic 
impacts.

4) We analysed the effects of road edge proximity on 
highways and we expected that the highest abundance 
of A. vulgare would occur at an intermediate distance 
from the road, because of the intermediate disturbance 
hypothesis.

5) We compared the abundance of A. vulgare in high-
way sampling sites based on leaf-litter depth between 0–5 
cm intervals. We hypothesised that the species abundance 
would increase with leaf-litter depth, because of the spe-
cies contribution to decomposition processes. 

6) We assessed differences between sampling sites 
based on highway age. We hypothesised that there would 
be a decrease in the abundance of the species from the 
oldest sites to the youngest sites, because of the invasive 
nature of this species.

7) In main roads we examined the effect of the main 
Hungarian vegetation types and we expected the highest 
abundance of A. vulgare in open habitats, such as grass-
lands. 

8) Finally, we analysed the effect of mowing on the 
abundance of A. vulgare on main roads. Our hypothesis 
was that the mowing would negatively affect the number 
of individuals. 

roadsides by the green corridor effect (11). The distribu-
tion of other species is reduced or becomes isolated to 
facilitate the expeditious spread of invasive species (12). 
However, not all new species can adapt and spread in the 
new area after entering and become invasive, as the „tens 
rules” by Williamson & Fitter (13) illustrates well. In the 
new habitats, 10% of imported species can escape to the 
wild, 10% of occasionally colonizing species become 
naturalized, and only 10% of naturalized species become 
invasive. Over recent decades the spread of invasive spe-
cies is related to climate change and the ever-increasing 
development of international commerce (14). The appear-
ance of a new invasive species into an ecosystem often 
does not result in an immediate impact, furthermore, in 
many cases, it is difficult to estimate which species are 
essential to ecosystem functioning and which are redun-
dant (15). The presence of invasive species in ecosystems 
is a remarkable problem worldwide because they have an 
impact on the structure and function of ecosystems, and 
biodiversity and the loss of habitats, and invader species 
can cause serious environmental, economic or social dam-
age (16). Clavero & García-Berthou (17) showed that 
overgrowth of invasive species contributed to 54% of ex-
tinction of animal species.

Firstly, the main objectives of this study were to inves-
tigate the invasive occurrence of A. vulgare along Hungar-
ian highways, and we studied how the invasion of the 
species impacts the isopod diversity of highway verges.

1) We hypothesised that A. vulgare has a negative effect 
on the diversity of the isopod communities because of the 
species invasiveness. Secondly, we explored what attri-
butes of roads (seasons, adjacent areas, road edge proxim-
ity, leaf-litter depth, highway age, vegetation and mow-
ing) affect the abundance of A. vulgare. 

Figure 1. Map of highways and the sampling sites. The code of sampling sites can be found in Table 1
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MATERIAL AND METHODS

Study sites and sampling procedure

Highways

Data collection was done along 5 Hungarian highways 
(M0, M1, M3, M5, M7) (Figure 1). Highway M0 is consi-
dered to be the main road but it is managed as a highway 
in Hungary, because the traffic intensity on the main road 
is the same as that of highways. Thirty sampling points 
were selected in the highway verges that were located 

among neighbouring habitats with different type of vege-
tation and various level of disturbance. Along each hig-
hway we selected 6-6 sampling points (Table 1) where a 
total of 180 double-glass pitfall traps made of 3 dl plastic 
cups filled with a 65% aqueous solution of ethylene glycol 
were established. Sampling sites were selected next to the 
lay-bys along highway where isopods were sampled using 
6-6 pitfall traps at each site and the distance between 
traps was 5 m. The traps were deployed three times 
(spring, summer, autumn) over a three-week period each 
year. On highways, we studied the effects of seasons, ad-

Table 1. Characterization of sampling sites along highway

Highway Code Sampling sites Adjacent area Leaf litter cover 
(%)

Leaf litter 
depth (cm) Soil

M0

1 0 km sos urban 15 3 construction debris

2 Anna-hegy orchard 15 1 gravelly

3 Csepel urban 40 2 sand

4 Alacska grassland 30 1 sand

5 Ferihegy grassland 10 4 gravelly,
clastic

6 Dunakeszi forest 20 3 clastic

M1

7 Zsámbék arable land 95 1 light loess

8 Óbarok forest 98 0.5 light loess

9 Turul orchard 98 6 light loess

10 Bábolna arable land 75 2 dark humus

11 Arrabona arable land 100 5 humic sand

12 Moson arable land 40 0.5 dark gravelly

M3

13 Kisbag forest 10 1 sand

14 Ecséd orchard 10 1 black loose

15 Rekettyés arable land 0 0 black loam

16 Gelej arable land 5 1 black loam

17 Polgár arable land 5 1 sand

18 Nyíregyháza arable land 10 4 loessal

M5

19 Inárcs sand grass 20 0.5 sand

20 Örkény forest 20 0.2 light sandy

21 Kecskemét arable land 80 0.2 dark humus

22 Petőfiszállás arable land 100 0.2 dark humus

23 Szatymaz grassland 100 1 dark humus

24 Röszke sand grass 100 5 sand

M7

25 Budaörs urban 100 0.2 darl loess

26 Velence orchard 100 5 light loess

27 Törek arable land, forest 98 1 brown, loessal

28 Táska grassland 50 0.2 light sandy

29 Szegerdő arable land 2 0.2 light gravelly

30 Letenye forest 98 0 gravelly, loam
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jacent areas, road edge proximity, leaf litter depth and the 
age of highways on the abundance of A. vulgare. Selection 
of sampling sites and coordination of sampling methods 
were occurred by the Center of Agricultural Research, 
Hungarian Academy of Sciences, Plant Protection Insti-
tute. When we analysed the effect of different factors on 
the abundance of A. vulgare, we did not consider the data 
of all 30 sampling sites except for annual and seasonal 
examination. To examine the effect of adjacent areas and 

road edge proximity, we selected 15 sampling sites (see 
Table 2). To assess the effect of leaf litter depth, we consi-
dered 12 sampling sites (see Table 3). To examine the 
effect of age of highways, we selected 10 sampling sites 
(see Table 4). 

Main roads

Along Hungarian main roads data was collected at 
four sampling sites representing the main types of verge 
habitats between 2014–2016 (Figure 2). Verge types were 
categorised based on the vegetation type of neighboring 
habitats. Sampling area Pilisjászfalu (Road No. 10) 
consisted of arid grassland with some small bushes. Mány 
(Road No. 1) was situated in the lowlands and hilly land-
scapes of Hungary, and was bordered by 2 roads running 
through agricultural land. Herceghalom (Road No.1) 
was situated next to a forest. Agárd (Road No. 7) crosses 
a wetland area in the west section of Lake Velence. All 
localities included three sections representing (1) no ma-
intenance (non mown) (2) normal maintenance (mown 
once a year) and (3) enhanced maintenance (mown twice 
or three times a year). The distance between 2 sections 
was 100 m. In each section five pitfall traps were estab-
lished 5 meters apart, and they were located 1,5 meters 
from the roads. Double glass pitfall traps filled with ethy-
lene glycol were used which were left in the fields for three 
weeks and three times a year in different seasons (spring, 
summer and autumn). We collected samples after first 
mowing in between May and June. After the second 
mowing the field experiment was repeated twice in Au-
gust and September. Trapped specimens were preserved 
in 75 percent alcohol. Sampling methods made it possib-
le to study the effects of vegetation type and mowing on 
abundance of  A. vulgare. Selection of sampling sites and 
coordination of sampling methods were occured by the 
Centre for Ecological Research, Hungarian Academy of 
Sciences, Danube Research Institute.

Table 2. Sampling sites along highways used to examine the effect of 
adjacent areas and road edge proximity

Types of 
adjacent areas Highway Sampling 

site
Distance from 

the road (~)

N
at

ur
al

 a
nd

  
se

m
i-n

at
ur

al Grasslands 

M5 Röszke 20 m 

M0 Ferihegy 40 m

M7 Táska 90 m

Forest

M5 Örkény 20 m

M3 Kisbag 40 m 

M1 Óbarok 90 m

D
ist

ur
be

d

Urban

M0 0 km 20 m

M7 Budaörs 40 m

M0 Csepel 90 m 

Orchard

M3 Ecséd 20 m

M1 Turul 40 m

M7 Velence 90 m

Arable land

M7 Szegerdő 20 m

M3 Polgár 40 m 

M5 Kecskemét 90 m 

Table 3. Sampling sites along highways used to examine the effect of 
leaf-litter depth

Highways Sampling sites Leaf litter depth (cm)

M7 Letenye 0

M3 Rekettyés

M0 Alacska 1

M3 Gelej

M0 Csepel 2

M1 Bábolna

M0 Dunakeszi 3

M0 0 km

M0 Ferihegy 4

M3 Nyíregyháza

M5 Röszke 5

M1 Arrabona

Table 4. Sampling sites along highways used to examine the effect of 
age of highway

Sampling sites Highways Year of establishment

Arrabona M1 1977

Bábolna M1 

Turul M1 1982

Óbarok M1

Kecskemét M5 1989

Őrkény M5 

Polgár M3 2002

Gelej M3

Ferihegy M0 2008

Szegerdő M7
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Data analysis

We used the PAST Paleontological Statistic suite for 
data analysis (19). Besides a number of individuals, we 
computed Shannon-Wiener diversity in order to analyse 
the invasive patterns of A. vulgare. The Shannon-Wiener 
index is more sensitive to the frequency of rare species (20, 
21, 22). Species with the highest abundance have the 
greatest influence on the Simpson’s index (20, 21, 22). The 
characterization of the A. vulgare population was based 
on relative abundance (Ar) and frequency (F). The years 
were the replications, except for the case of the annual 
population dynamics, when sampling dates were the rep-
lications. One-Way ANOVA was applied to assess the 
differences between the number of individuals of A. vul-
gare in relation to years, seasons, adjacent areas, road edge 
proximity, leaf-litter depth and highway age. We used the 
keys of Hopkin (23), Schmidt (24), and Farkas & Vilisics 
(25) for identification of isopod specimens. Species’ names 
were applied according to Schmalfuss (26).

RESULT

γ-diversity

Along main roads, we collected 6 isopod species and 
on highway verges 18 species. During our study A. vulgare 
was the most abundant isopod species (highways: Ar 

=89% of a total number of individuals collected, main 
roads: Ar = 89%) and frequent species (highways: F = 
94%, main roads: F = 100%). A total of 52361 specimens 
of A. vulgare were collected along roads, composed of 
45626 individuals on highway verges and 6735 individu-
als on main road verges. 

Highways

We examined the annual population dynamics along 
highways and we found  no significant differences (p=0.416) 
in abundance of A. vulgare. The number of A. vulgare, the 
relative abundance and the frequency increased with years 
(Figure 3). Simultaneously, the values of Shannon-Wiener 
diversity of isopods along highways decreased with years, 
beacause it was significantly lower (p= 0.049) in 2013 
compared to 2011 (Figure 4).

Significant differences were no found between number 
of A. vulgare (p=0.287) in relation to season. The number 
of the species was the highest in summer and the lowest 
was in autumn. The highest relative abundance and fre-
quency of the species also were in summer, while the low-
est was in autumn (Figure 5).

We found statistically significant differences in num-
ber of A. vulgare (p=0.013) in relation to adjacent areas of 
highways. Abundance of A. vulgare was significantly 
higher next to arable lands compared to verges next to 

Figure 2. Sampling sites and treatment along main roads
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forests, urban areas and orchards. The relative abundance 
of the species was lowest next to urban areas than the 
other verges, while the frequency of the species was 100% 
in each verges (Figure 6). 

Significant differences were found between number of 
the species (p=0.045) in relation to road edge proximity. 
The number of A. vulgare was significantly higher at 40 
m from the road than at 20 m from the road. The relative 

Figure 3. Annual population dynamics of abundance (A), and relative abundance  and frequency (B) of A. vulgare (average ± S.E.). 

Figure 4. Annual population dynamics of species richness (A) and Shannon-Wiener diversity (B) of isopod assemblages in highway verges (average 
± S.E.). Different letters indicate significant (p<0.05) differences (one-way ANOVA)

Figure 5. Abundance (A) and relative abundance and frequency (B) of A. vulgare in highway verges in relation to season (average ± S.E.). 
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Figure 6. Abundance (A) and relative abundance and frequency (B) of A. vulgare in highway verges in relation to adjacent areas (average ± 
S.E.). Different letters indicate significant (p<0.05) differences (one-way ANOVA)

Figure 7. Abundance (N) and relative abundance and frequency (B) of A. vulgare in highway verges located at different distances (20 m, 40 m 
and 90 m) from roads (average ± S.E.). Different letters indicate significant (p<0.05) differences (one-way ANOVA)

Figure 8. Abundance (N) and relative abundance and frequency (B) of A. vulgare in highway verges relative to leaf-litter depth in the verges 
that were examined (average ± S.E.). Different letters indicate significant (p<0.05) differences (one-way ANOVA)

abundance of A. vulgare was lowest at 20 m from the road 
and the frequency of the species was equal in each dis-
tance from the road (Figure 7).

There were significant differences (p=0.00016) in 
abundance of A. vulgare in relation to leaf-litter depth.  
The number of A. vulgare was significantly highest in sam-
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pling sites at 0 cm leaf-litter depth, and it was signifi-
cantly lowest in sampling sites with 3 cm leaf-litter depth 
compared to sampling sites with 5 cm leaf-litter depth. 
The relative abundance of A. vulgare was lowest in sam-
pling sites at 2 cm leaf-litter depth and the frequency of 

the species was equal in each verges except for the sites at 
4 cm leaf-litter depth (Figure 8).

We observed statistically significant differences in 
number of A. vulgare (p=0.010) in relation to years when 
highway have been finished. The abundance of the species 

Figure 9. Abundance (N) and relative abundance and frequency (B) of A. vulgare in highway verges relative to the year when highway have 
been finished (average ± S.E.). Different letters indicate significant (p<0.05) differences (one-way ANOVA)

Figure 11. Abundance (N) and relative abundance and frequency (B) of A. vulgare in mainroad verges relative to mowing intensity (average ± S.E.). 

Figure 10. Abundance (N) and relative abundance and frequency (B) of A. vulgare in mainroad verges relative to the vegetation type (average 
± S.E.).
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was significantly highest in verges that were established 
in 2002 compared to other verges. The relative abundance 
of A. vulgare increased from old verges to young verges 
and the frequency of the species was equal in each verge 
types (Figure 9).

Main roads

Statistically significant differences were no found be-
tween number of A. vulgare (p=0.886) in relation to veg-
etation type of main roads. The highest number of relative 
abundance of A. vulgare were in arid grassland and in 
wetland, while the lowest was in the forested verges (Fig-
ure 10). 

Finally, along main roads, significant differences were 
no found between number of A. vulgare (p=0.370) in re-
lation to mowing intensity. The mowing negatively af-
fected the number of individuals and the relative abun-
dance of A. vulgare. The highest number of specimens and 
relative abundance of the species were recorded in the no 
maintenance sections, whereas the lowest number was in 
enhanced maintenance sections (Figure 11). 

DISCUSSION

Highways

The isopod fauna of roadside verges are not typically 
the focus of zoological research, and there are few pub-
lished studies on this taxon. We are the first researchers 
to examine the isopod fauna along roads in Hungary. The 
holomediterranean A. vulgare, which is a typical indicator 
of anthropogenic impacts (27), probably originated in the 
eastern mediterranean region (28). In Hungary, A. vulgare 
was initially discovered by Csiki Endre in 1926 in Buda-
pest, Bodajk and Pápa (29). This widely distributed spe-
cies can be found in most parts of the world, and is as-
sociated with high human activity and has a broad 
ecological tolerance (28). This life history may explain 
why this species can colonise disturbed habitats such as 
roadsides. The high abundance of A. vulgare reflects the 
environmental tolerance and invasive nature of this spe-
cies. A. vulgare is one of the most common species of 
isopod in Hungary (25). The abundance of A. vulgare was 
observed to be similar to other habitats in Hungary. Our 
results compare well to Szlávec (30) in Hortobágy Na-
tional Park, Farkas (31, 32) in Somogy county, in Ba-
ranya county (33) and in Tolna county (34) A. vulgare was 
one of the most frequent and abundant species in the 
areas examined. Hornung et al. (12, 35) studied isopods 
in Budapest and other cities and observed that A. vulgare 
was the widest spread and common species.

The high number of traps we deployed along highways 
made it possible to assess the relationship between isopod 
diversity and the high abundance of A. vulgare. Our 
results support our hypothesis that A. vulgare has a nega-
tive effect on the diversity of the isopod communities. 

Davis (36) examined isopods in a dune grassland and 
observed that A. vulgare showed a sudden increase in ag-
gregation in 1968 and 1973. Similarly, by examining the 
annual population dynamics, we found that the increa-
sing abundance of A. vulgare was related to the decreasing 
isopod diversity on highways. Horváth et al. (37), Magu-
ra et al. (38) and Bogyó et al. (39) concluded that while 
the populations of species that are successful adapters 
increase, the distribution and occurrence of less-adaptive 
species decreases.

Our results based on seasonality do not support the 
hypothesis that the highest abundance of A. vulgare is in 
autumn. The high abundance of species in summer on 
highway verges might be explained by the high reproduc-
tive potential (40), excellent adaptation ability and 
dehydration tolerance (41). In isopods, the main mecha-
nism for water loss is evaporation from the respiratory 
organs and the body surface (42). Isopods differ expressly 
in their ability to tolerate dry conditions (43). Arid-tole-
rant-species have a complex structural respiratory system 
and thick cuticle (44). Among the examined Hungarian 
Armadillidium species (A. zenkeri, A. nasatum, A. versi-
color, A. vulgare), A. vulgare has the thickest cuticle and 
an extremely structured respiratory system (41), and is 
able to take up 94% of its normal oxygen requirement in 
dry air with a dry integument (45). According to many 
published studies, the long-day photoperiods (46) and the 
warm temperatures (47) stimulate the reproduction and 
the growth of the offspring (48) of A. vulgare. This speci-
es produced larger offspring when the food supply of fe-
males is reduced, for example, in summer when food 
availability and quality is low (49). Moreover, females may 
not produce offspring until the third year, which will be 
smaller in size (48).

The larger difference between the fragmented and the 
adjacent land in vegetation structure is expected to lead 
to microclimate differences and hence, a greater edge 
effect (50). To test our hypotheses we compared highway 
sampling sites based on adjacent areas. Our results clearly 
demonstrate that sites near arable fields proved to be more 
advantageous to A. vulgare. Human activity stresses soil 
communities due to heavy fertilizer use, frequent biocide 
treatment and export of nutrient and organic matter (51).  
Conversely, many studies show that the margins of arab-
le fields rapidly produce biodiversity benefits for the soil 
macrofauna (52, 53). The high abundance of A. vulgare 
recorded near arable fields reflects the species’ ability to 
adapt to disturbed and open habitats. Wolters & Ek-
schmitt (51) showed that although the abundance and 
diversity of isopods in arable lands is very low, marginal 
habitats adjacent to arable lands have the highest 
abundance. 

Our data showed that A. vulgare abundance was hig-
hest at intermediate (40 m) distances from the road, whi-
ch supported our hypothesis. Roadside verges have a spe-
cific flora and fauna, contained within an ecotone (54). 
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Delgado et al. (55) showed that the highest frequency of 
litter invertebrate species occurred close to a road (10 and 
20 m from the edge). 

We expected that the highest number of A. vulgare 
would be observed in sampling sites that had the thickest 
leaf-litter, but our result does not support this hypothesis. 
It is known that isopods are responsible for most of the 
decomposition of organic matter, mostly leaf litter decom-
position (56). The leaf-litter and its microorganisms serve 
as food sources for isopods. Moreover, the surfaces of 
plant residues have much more active microbial biomass 
than in the soil (57). However, we found that the 0 cm 
thick leaf-litter provided the most suitable habitat for A. 
vulgare. Thick leaf-litter has increased CO2 levels, which 
has a negative effect on the fertility of isopods (58). Pan-
lasigui (27) showed that A. vulgare displays a preference 
for leaf-litter with a water content of 0.39 compared to 
litter with a water content 0.53.

Because the regeneration of natural vegetation going 
on 30–40 years, we expected the highest abundance on 
the oldest highway sampling site, but our hypothesis was 
not supported by this result. Several studies show that 
many invader plant and animal species’colonies have ex-
panded along roads where the age of roads has an impact 
on the diversity and abundance of organisms (7, 59, 60, 
61, 62, 63). Similarly, we found an increase in the relative 
abundance of A. vulgare that probably reflected the inva-
sive patterns of the species. Along with Hungarian hig-
hways, Fetykó (64) observed only a slight increase in the 
number of scale insects in the old sampling sites, but Len-
gyel et al. (63) provided evidence for a growing population 
of spotted wing drosophila at such sites.

Main roads

The highest abundance of A. vulgare was in arid grass-
lands, which confirmed our original hypothesis. We 
conclude that A. vulgare is a typical and common species 
of drier areas (65, 45, 66). Miller & Cameron (67) showed 
that survivorship of A. vulgare in Texas was highest in 
grassland areas. Roadside verges of Hungary typically 
consist of grassy vegetation, habitats that may be facilita-
ting the invasion and spread of A. vulgare. The road stret-
ches examined are located in lowland areas that bypass 
the mountain regions, which may also explain the high 
biomass of A. vulgare on roadside verges. According to our 
data, abundance of A. vulgare was highest in grassy verges 
of main roads compared to other verge types. According 
to Farkas & Vilisics (25), this cosmopolitan species has a 
ubiquitous distribution in Hungary, except for protected 
hardwood forests. Our findings concur with Farkas & 
Vilisics (25) in addition, the relative abundance of A. vul-
gare was lowest in the forested verges of main roads and 
highway verges near forests. Few studies have examined 
isopod communities in Hungarian mountainous areas. 
In the North-Vértes Mountains, and in Hungarian Nort-

hern Mountains, Kontschán (68, 69) observed that A. 
vulgare was not common. In Mátra Mountains, Vo-
na-Túri & Szmatona-Túri (70) found that the species was 
not dominant. Vilisics & Hornung (71) examined many 
regions in Hungary: Great Plains, Little Plains, Western 
Hungary, Transdanubian Hills, Transdanubian Moun-
tain Range, Northern Mountain Range, Aggtelek Natio-
nal Park and Budapest. According to their studies A. 
vulgare dominated the isopod communities, but the spe-
cies was not detected in the Northern Mountain Range. 
Accordingly, the biogeographical context and habitat 
structure are likely impacting the spread of A. vulgare 
along roads.

Mowing has a positive effect on floral diversity which 
contributes to a diverse habitat structure and increasing 
animal and plant species richness (72, 73, 74). Responses 
of isopods to mowing are not well known but studies 
about other soil-dwelling arthropods suggest that grass-
land management can alter soil humidity, vegetation 
structure and lighting conditions (75), factors that likely 
influence isopod communities. Our result concerning the 
high abundance on non-mowing sections confirms our 
hypothesis. Although A. vulgare adapt well to dry condi-
tions and disturbance, mowing has a negative effect on 
the species’ abundance.

Conclusion

Our results demonstrate that the terrestrial isopod A. 
vulgare was common and widespread in Hungarian road-
side verges. The ability of this species to successfully co-
lonize open vegetation and its tolerance of dry conditions 
can be attributed mostly to its anatomical features. Besi-
des roads and traffic, biogeographical context, different 
land use, water supply, surrounding landscapes, habitat 
structure and vegetation significantly influence the 
abundance of A. vulgare. The increasing abundance of A. 
vulgare in Hungary is related to the decreasing species 
diversity of other isopods on highways. Consequently, this 
invasive species is likely to be a strong determinant of 
invertebrate community composition and as such may 
influence ecosystem function along roadside verges in 
Hungary.
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