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ABSTRACT

Ports play an essential role in international trade, and any inefficiency can lead to costly delays and 
major disruptions. Therefore, the efficiency of port operations is crucial for the smoothness of global 
supply chains helping reduce the risk of congestion and accidents, thereby enhancing maritime 
safety. Optimizing container management is particularly significant in this context. Thus, the problem 
of storage space allocation problem is a critical aspect of managing port operations, significantly 
influencing the efficiency of the retrieval process and the number of reshuffles. This study proposes a 
new policy, aimed at optimizing the use of space for import containers in a constrained environment. 
This policy incorporates considerations to facilitate the retrieval process and reduce the expected 
number of reshuffles. As a case study, we have taken the Port of Annaba in Algeria. Using an improved 
genetic algorithm and a heuristic approach, we achieved up to 33% improvement compared to the 
existing port policy. This demonstrates the effectiveness of our policy in enhancing port operations 
within spatial constraints.

1 Introduction 

The growing evolution of maritime trade has elevated 
container transportation to a key logistical element, posi-
tioning container terminals as pivotal nodes in interna-
tional transport [1, 2]. This significant increase in global 
trade volume requires a comprehensive redesign of the 
transportation network to accommodate the intensity of 
cargo flow [3]. Logistics is the art of efficiently managing 
the flow of goods and services from their point of origin 
to their final destination, optimizing storage, transporta-
tion, and distribution processes. Transport plays a cen-
tral role in logistics, ensuring the physical movement of 
goods across various stages of the supply chain [4]. The 
movement of goods in standardized containers using var-
ious modes such as ships, trucks, trains, or barges, facili-
tates seamless transitions without direct handling of the 
freight during mode changes [5, 6].

To ensure smooth operations at the port, including 
berthing, unloading/loading operations, and storage, it 

is imperative to effectively manage the complexity of 
these processes [7]. Efficient berthing schedules, accu-
rate unloading/loading procedures, and strategic yard 
management are essential to minimize delays, optimize 
resources, and prevent congestion [8, 9].

At container terminal, the storage yard is a dynamic 
space where containers pause before continuing their 
journey by road, rail or sea. Inside the yard, containers 
are carefully stacked to maximize the use of available 
space. The precise details of container stacking reveal 
an important aspect of operations: as the stacks rise to 
the top, the equipment used to handle them generally 
interacts only with the highest container [10]. The stor-
age yard consists of several perpendicular or parallel 
ways to the berth known as blocks. Each block is com-
posed of a number of bays, and within each bay are 
stacks, which are characterized by their stack height, 
known as tiers. Additionally, within each stack, there 
are designated slots for the placement of containers 
(Figure 1) [11].
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Small ports are facing a glaring shortage of storage 
space due to a significant increase in containerized traf-
fic (as observed in the case of the port of Annaba). This 
saturation compromises their operational efficiency, as 
port facilities struggle to meet the growing demand for 
storage capacity. Despite exploring alternatives such as 
constructing storage areas away from the port, judi-
cious optimization of existing storage space remains a 
crucial key, which is our objective in this work. We pro-
pose a new policy aimed at fully exploiting the available 
space while respecting constraints related to container 
retrieval and implicitly contributing to control the esti-
mated number of reshuffles.

2 Literature review

The storage space allocation problem (SSAP) is 
widely discussed and often intertwined with other as-
pects of port operations. Therefore, addressing this is-
sue requires consideration of these related aspects. The 
central objective of this problem is to optimize storage 
space utilization efficiently while adhering to certain 
rules to minimize the number of necessary reshuffles. 
Reshuffle, involving non-productive movements during 
rearrangement of containers to achieve the correct or-
der, poses a significant challenge in port operations 
management. The (SSAP) has been studied extensively 
in the field of operations research, and various mathe-
matical models, algorithms and heuristics have been 
proposed to solve it. We mention 21 studies that ad-
dress the storage problem by clearly determining the 
context and the methods used. 

Targeting export containers, where arrivals are 
random and containers are initially stored without 
specific order, it is imperative to reshuffle them based 
on predefined criteria such as departure date or port 
of destination. In this context, the studies in the litera-
ture are published to discuss the pre-marshalling 
problem knowing that in this problem we start with an 
initial layout to final layout. [12] Develop a model that 
adheres to a specified yard layout and follows a given 
sequence for loading containers onto the ship. [13] 
They introduce a heuristic tree search approach, the 
study aims to efficiently sort items into stacks based 
on group indices to streamline loading onto ships. Oth-
er heuristics are also developed by authors; [14] pro-
pose a heuristic solution method emphasizing the 
importance of prioritizing containers to minimize 
movements and optimize efficiency. Additionally, an 
instance generator is developed to create problems of 
varying difficulty levels. By considering factors like bay 
occupancy and priority container placement, instances 
ranging from low to high difficulty are generated. [15] 
Introduce two types of container, labeled as Type-A 
and Type-B, each requiring a sequence of container 
movements to meet specified conditions. Two labeling 
algorithms, Heuristic-A and Heuristic-B, are presented 
to address these problems. 

This problem not only relied on using heuristics but 
also employed meta-heuristics. We highlight an inter-
esting work by [16] propose a variable chromosome 
length genetic algorithm to solve the problem, aiming to 
optimize vessel loading time by minimizing mis-over-
lays with the fewest container movements. 

Figure 1 Storage yard layout
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To enhance the efficiency of solving instances opti-
mally, [17] employ A* and IDA* algorithms along with 
various innovative branching and symmetry breaking 
heuristics. 

While previous studies mentioned focused on mini-
mizing crane movement, a study by [18] demonstrated 
that the number of moves is not a suitable indicator for 
measuring crane time; so authors focus on minimizing 
crane times rather than just the number of movements. 
Two exact approaches are developed: an integer linear 
model and a branch and bound algorithm. These meth-
ods incorporate new upper and lower bounds, domi-
nance criteria, and a heuristic procedure to provide 
optimal solutions for practical-sized problems. 

Similarly, when retrieving containers from the bot-
tom of a stack, where containers above must be moved 
first to access the desired one, reshuffle is necessary. 
[19] Propose a MIP formulations and a simulated an-
nealing algorithm to minimize the number of reshuffles 
in the retrieval stage. [20] Utilize a decision rule and 
compares it with a branch and bound algorithm. [21] 
Develop strategies, use a branch and bound algorithm 
and propose heuristics to minimize the total time of 
containers during the retrieval process. [22] Address 
the oversight of neglecting the impact of container re-
shuffling, incorporating the macro-level impact of re-
shuffling via discrete event simulation into a mixed 
integer programming model. Empirical methods are de-
vised to strike a balance between computational speed 
and solution quality. Results highlight that disregarding 
reshuffling activities during planning can result in an 
overestimation of yard capacity. 

As mentioned earlier, the storage problem has been 
addressed along with other major issues in container 
terminal operations, including yard crane scheduling; 
[23] propose a model to optimize both crane travel time 
and future relocations. Present a heuristic local search 
scheme based on the formulation’s structure and the 
linear programming relaxation of subproblems. [24] 
Address the increasing significance of storage yard 
management in container terminals, with the bottle-
neck of port operations transitioning to the yard area. 
Introduce a flexible yard template strategy. 

Moreover, researchers also tackled this issue using 
stochastic techniques, dynamic programming, and pro-
viding decision support. [25] Address space allocation 
for stacking export containers and propose a hybrid 
storage policy. They employ a stochastic programming 
model with the concept of recourse to construct their 
proposal. By combining class-dedicated and sharing 
strategies, the aim is to increase terminal productivity 
and reduce vessel duration-of-stay. [26] Propose a deci-
sion-making method to optimize container allocation 
within the terminal. Their model considers container 
arrivals and departures, as well as a certain degree of 
uncertainty in the retrieval order. [27] Propose a deci-

sion-based heuristic to address the storage space allo-
cation problem in ports, aiming to minimize gantry 
movements while considering temporal asymmetries in 
container handling processes. 

In the case of import containers, where customers 
retrieve containers randomly, additional movements 
are inevitable during retrieval as the order of customer 
requests cannot be predicted in advance. [28] Compare 
two strategies (segregating and non-segregating) to see 
the expected number of reshuffle. They did not attempt 
to identify an optimal strategy. [29] Adopt the segregat-
ing strategy; containers unloaded during different peri-
ods are not allowed to be stored in the same bay. Aim to 
minimize the number of rehandles. The constant, cyclic, 
and dynamic arrival rate of import containers is consid-
ered suggesting a methodology, based on the Lagrang-
ian relaxation technique, for finding the optimal 
solution. [30] Examine the two previously discussed 
strategies. The aim is to build on these earlier findings 
and devise specific strategies for intermediate scenari-
os-situations that cannot be fully addressed by either a 
non-segregating or segregating strategy alone. Three 
distinct strategies are proposed. Each strategy involves 
two phases: in the initial phase, containers from various 
ships are separated, and in the subsequent phase, each 
strategy employs a unique method to blend containers 
from different ships. Determine for each strategy the 
appropriate terminal conditions. This made it easier for 
operators to choose the convenient strategy. [31] To 
minimize the number of expected reshuffle, they model 
the optimization problem as a generalized assignment 
problem, and compare the performance of two meth-
ods, the integer linear programming method and meta-
heuristics (genetic algorithm). [32] Propose a storage 
space sharing strategy between a container terminal 
and dry port to address space shortage for import con-
tainers. Employ a multiple-objective mixed integer pro-
gramming model to minimize travel distance, 
minimizing imbalance in number of containers, maxi-
mizing shared storage space of the dry, and propose a 
non-dominated sorting genetic algorithm.

While the literature review of import containers 
mainly focused on minimizing the estimated number of 
reshuffles, this work primarily focuses on minimizing 
space utilization during container allocation due to the 
limited available space. We propose a new policy aimed 
at adjusting port operations to reflect real-world condi-
tions, respecting certain constraints of the retrieval 
process and aiming to control the estimated number of 
reshuffles, thus optimizing yard efficiency. To address 
these challenges, an improved genetic algorithm and a 
proposed heuristic are utilized to solve the problem ef-
fectively. These contributions highlight the practical rel-
evance of the study within the realm of related works.

In the next section, we present the port of Annaba 
and the used policy for the storage of containers. Then, 
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we describe the problem and the proposed policy. In 
section four, we explain the methods used to solve the 
problem. Results and discussions are provided in sec-
tion five. Section six summarizes the conclusion and the 
recommendations. 

3 Problem Statement 

3.1 Case study: Port of Annaba 

The port of Annaba is one of the key ports in Algeria, 
playing a vital role in the country’s international trade. 
Located on the eastern Mediterranean coast, it handles 
a significant volume of cargo, including containerized 
goods. The port faces substantial challenges due to 
space constraints, which impact its efficiency in con-
tainer management. These challenges make it an ideal 
case study for testing new policies aimed at optimizing 
space utilization. 

The port of Annaba ensures the storage of import 
and export containers of different sizes (20’, 40’, and 
45’). The port primarily serves as an import destination 
for containers, while the number of containers exported 
is very limited. As for empty containers returned by cus-
tomers, their location is SIL (Intermodal Society of Lo-
gistics), 3 kilometers away from the port. It houses the 
main maritime company and serves as the primary site 
for receiving export containers before they are trans-
ported to the port. Regarding empty containers, coordi-
nation between the SIL and the port is based on ship 
availability for transporting these containers and ac-
cording to the stowage plan. Communication between 
the port expert and SIL is conducted to determine the 
number of empty containers that can be transported. 
Table 1 shows the number of containers returned by 
customers during the month of January (2024): 21 
ships belonging to CMA CGM Company, 3 ships to  
COSCO Company and 2 ships to HMM company. Based 

Table 1 The return of empty containers in January (SIL Annaba)

N° SHIP
Empty Container

Total TEU
20’ 40’

1 ALLEGRO 20/11/2023 2 0 2
2 ATLANTIC GENEVA 16/01/2024 36 163 362
3 CONESTE 22/06/2023 0 2 4
4 CONTSHIP ACE 19/12/2023 2 168 338
5 CONTSHIP ACE 21/11/2023 3 0 3
6 JAGUAR 20/12/2023 28 194 416
7 KESTREL 27/12/2023 1 2 5
8 MARINA L 05/01/2024 5 31 67
9 MARINA L 08/12/2023 5 21 47

10 MARINA L 11/11/2023 0 1 2
11 SKYVIEW 02/11/2023 1 1 3
12 SKYVIEW 31/12/2023 2 9 20
13 SPICA J 02/11/2023 0 1 2
14 SPICA J 10/01/2024 30 123 276
15 SPICA J 12/12/2023 10 39 88
16 SPICA J 21/10/2023 0 1 2
17 SPICA J 23/01/2024 11 10 31
18 SPICA J 26/12/2023 66 186 438
19 SPICA J 27/11/2023 4 1 6
20 YIGITCAN A 13/12/2023 6 3 12
21 YIGITCAN A 14/11/2023 2 1 4
1 YAKOOT 22/01/2024 3 6 15
2 YAKOOT 25/12/2023 8 10 28
3 YAKOOT 29/11/2023 1 2 5
1 YAKOOT 25/12/2023 7 5 17
2 YAKOOT 22/01/2024 6 1 8

Total TEU 238 979 2196
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on the number of returned containers, we can infer that 
the number of containers unloaded during December 
reached 1404 TEU (Twenty-foot Equivalent Unit), pro-
viding us with an overview of the monthly unloading 
volume. The information obtained from SIL indicates 
that the number of TEU remains relatively stable across 
months, although variations are observed between 
seasons.

3.2 Port policy 

At the Port of Annaba; the container storage process 
follows a series of well-defined stages. Initially, contain-
ers are unloaded from the ship using cranes, and then 
deposited in the pre-disembarkation area. Subsequent-
ly, depending on the availability of transport trucks, 
these containers are then transported to the designated 
storage area. 

The storage area is divided into two main sections: 
import and export. Within each section, containers of 
different sizes are stored separately (20’, 40’, and 45’). 
For each size of container, two types are distinguished: 
Type A and Type B. Type A containers refer to individu-
al containers where the estimated time of their retrieval 
is different. Type B containers refer to container by 
group; where containers of the same group have the 
same estimated time of retrieval. The rules, according to 

which they store containers at the port, whatever their 
size, are as follows:
1. Type A and type B containers are stored in separate 

bays.
2. Type B containers belonging to different groups can-

not be stored in the same stack.
3. Type B containers belonging to the same group must 

be stored in successive stacks.

Figure 2 illustrates the policy by applying the afore-
mentioned rules with the following data:

Type A containers = 22 containers.
Type B containers = 99 containers.
Number of groups = 6; 
Number of containers in each group: 

[10/14/18/19/20/18] respectively.
Number of stacks = 6.
Number of tiers = 3.
Bay capacity = 3*6 = 18 slot. (For type B containers) 
Bay capacity = (3*6) – (Number of Tiers – 1) = (18 – 

(3 – 1)) = 16 slot (For type A containers); the capacity of 
the bay is restricted to respect the retrieval process. For 
more details see appendix A.

As illustrated in Figure 2, group (1) occupies 4 stacks, 
leaving 2 empty slots, group (2) occupies 5 stacks, with  

Figure 2 Storage of container according to the policy of the port
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1 empty slot remaining, and group (3) occupies 6 stacks, 
with no empty slot left. Group (4) occupies 7 stacks, leav-
ing 2 empty slots. Group (5) occupies 7 stacks, with 1 
empty slot remaining. Lastly, group (6) occupies 6 stacks, 
with no empty slots left. Consequently, the six groups col-
lectively occupy 35 stacks with 6 empty slots. Type A con-
tainers occupies 8 stacks with 2 empty slots in the first 
bay. Table 2 summarizes the results of the two types of 
containers.

The storage space allocation problem aims to find an 
optimal distribution of containers to efficiently utilize 
available space and facilitate container retrieval, which 
becomes increasingly challenging at the port of Annaba 
due to its restricted dimensions. Therefore, a thorough 
examination of the port’s container storage policy is in-
dispensable. Although the port has implemented a poli-
cy for managing container storage, it is not without 
flaws. 

Detailing the container storage policy employed at 
the Port of Annaba reveals several advantages and dis-
advantages. Among the advantages, for type B contain-
ers, retrieval is made easier without the need for 
reshuffling as each group is stored in successive stacks 
(rule 3) and did not stored with another group in a 
same stack (rule 2). Additionally, the separation of type 
A and B containers prevents confusion between them, 
contributing to more efficient storage management. 
However, this policy also presents significant draw-
backs. Firstly, it consumes more space as separating 
container types may require additional storage area. 
Moreover, type A containers often require frequent re-
shuffling during retrieval process, as the order of re-
trieval for each container is not the same. This can 
potentially slowing down operations and lead to delays 
in cargo processing. By assessing these advantages and 
disadvantages, it becomes crucial to strike a balance be-
tween operational efficiency and optimal space utiliza-
tion to enhance the overall performance of the Port of 
Annaba.

3.3 Proposed policy

The fundamental principle of this policy is to store 
both types A and B together. The primary objective is to 
optimize the utilization of available space. This policy is 
based on two main assumptions:

1.  The combined storage of the two types of contain-
ers, A and B, can benefit the use of available space.

2.  The separation of type A containers into different 
stacks can reduce the number of reshuffles.
However, the major challenge lies in designing an ef-

ficient storage method that adheres to the container re-
trieval process and controls the estimated number of 
required reshufflings. To achieve this, we must consider 
the rules inherent in the port’s policy:
2.  Type B containers belonging to different groups can-

not be stored in the same stack.
3.  Type B containers belonging to the same group must 

be stored in successive stacks.
The first rule is relaxed to optimize the utilization of 

the space.
And we add:

4.  Type A containers are always stored on the top of 
the stack.

5.  If a bay contains only one group of type B containers 
and at least one type A container, there must be at 
least one container from this group at the highest 
tier of this bay.

6.  If a bay contains more than one group of type B con-
tainers and at least one type A container, there must 
be an empty slot at the highest tier of this bay.

(4) The aim of reserving the highest tier for type A 
containers is to minimize the estimated number of re-
shuffles caused by storing these containers in the same 
bay. Storing type A containers on top of each stack facili-
tates their retrieval.

(5 and 6) Respect the retrieval process, specifically 
for type B containers, to avoid being blocked by type A 
containers.

Explaining the two policies clarifies that by applying 
the port’s policy to store type A and B containers, only 
one way can be considered (Figure 2). However, the 
proposed policy requires more steps. According to con-
straints 5 and 6, there are several ways to store the two 
types of containers, especially type A containers as it is 
unclear in which bay and with which group these con-
tainers should be stored to achieve the final optimized 
location. For these reasons, we aim to find the optimal 
assignment of containers while respecting the men-
tioned rules and constraints. 

Table 2 The utilized space according to the policy of the port

Type of container Number of  
utilized bays

Number of the rest stacks 
in the last bay

Number of  
empty slots

Type A 2 4 2
Type B 6 1 6
Total 8 5 8
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4 Resolution method 

The storage space allocation problem is addressed 
by several methods, ranging from exact methods to Me-
ta-heuristics. For large-scale problem instances, meta-
algorithms-based approaches are often favored due to 
their ability to provide high-quality solutions within 
reasonable timeframes. Among these approaches, ge-
netic algorithms stand out as particularly affective solu-
tions, capable of finding acceptable solution in complex 
and dynamic environments. This is why we have chosen 
the genetic algorithm to address our problem, confident 
in its ability to tackle the specific challenges of contain-
er management in our context. We use a local search in 
the crossover operator to develop the neighbors of chil-
dren, aiming to explore more of the solution space and 
accelerate the process of finding the optimal solution. 
Additionally, we propose a heuristic to achieve an ad-
missible solution. Both the algorithms and the heuristic, 
along with the used parameters, are presented in this 
section.

The algorithm is developed in PYTHON version 2.7. 
PYTHON is an interpreted, object-oriented, high-level 
programming language with dynamic semantics.

4.1 Genetic algorithm

4.1.1 Overview 

Over the past forty years, biologically inspired com-
puting has gone through various stages. Interest in this 
field has led to advancements in neural networks, ma-
chine learning, and evolutionary computation, particu-
larly genetic algorithms [33]. According to [34] 
single-solution metaheuristics algorithms enhance a sin-
gle solution through local search but may get trapped in 
local optima (simulated annealing, tabu search, and guid-
ed local search). Conversely, population-based metaheu-
ristics employ multiple candidate solutions to maintain 
diversity and evade local optima (genetic algorithm, par-
ticle swarm optimization, and ant colony optimization). 

4.1.2 Definition 

A genetic algorithm is a search heuristic inspired by 
the process of natural selection. It falls under the broad-
er category of evolutionary algorithms and is designed 
to find approximate solutions to optimization and 
search problems [35]. Introduced by John Holland in 
the 1960s, genetic algorithms draw inspiration from bi-
ological evolution, employing concepts such as selec-
tion, crossover, and mutation to evolve a population of 
potential solutions [36]. Over successive generations, 
the algorithm refines and adapts these solutions, favor-

ing individuals that demonstrate better fitness for the 
given problem [37].

4.1.3 Applications 

Genetic algorithms are widely applied in optimiza-
tion, machine learning, and artificial intelligence. They 
have proven effective in solving complex problems 
where traditional algorithms might struggle, offering a 
unique approach to finding solutions through simulated 
evolution [38].

In the realm of supply chain management (SCM), ge-
netic algorithms have emerged as a pivotal toot for ad-
dressing various challenges [39]. [40] Undertake a 
comprehensive review, encompassing 220 articles that 
leverage Gas across different SCM facets.

4.1.4 Genetic algorithm chromosome 

A chromosome in genetic algorithms is a string of 
genes representing a potential solution to the optimiza-
tion problem. The quality of chromosome representa-
tion in a genetic algorithm is pivotal in determining the 
obtained solution. A well-designed representation must 
balance problem complexity with algorithm efficiency, 
allowing genetic operators to manipulate solutions 
meaningfully. Inadequate choices may lead to crucial in-
formation loss or hinder convergence towards optimal 
solutions [41-43].

As a configuration or capacity of a bay is defined by a 
number of slots, and each container can be stored once 
(occupying one slot), the simple chromosome represen-
tation involves a container number and the affected slot 
number, where a slot number is denoted by bay, stack, 
and tier. However, opting for this representation would 
complicate the problem due to constraints imposed by 
rule 3 (successive stacks), and the solution space would 
be extensive. As previously mentioned, our policy’s fun-
damental principle is to store both types A and B togeth-
er. We believe a representation that integrates both 
container types will be more practical. Determining the 
optimal number of type A containers to store with groups 
of type B containers will be crucial, meaning the assign-
ment of type A containers to groups of type B containers.

According to Figure 3, the chromosome represents 
the assignment of 7 containers of type A to 4 groups of 
containers of type B. For example, container number 2 
from type A is assigned to group number 4. Figure 4 il-
lustrates the simplification of the chromosome represen-
tation; 2 containers of type A are assigned to group 
number 1. To understand the proposed policy and the ap-
plication of the genetic algorithm, Figure 5 demonstrates 
the storage of containers by applying the assignment rep-
resented in the representation of the chromosome.
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4.1.5 Steps

Initialization: create an initial population of poten-
tial solutions, often randomly generated [44]. It is the 
case of this work as we randomly generate the initial 
population.

Selection: evaluate the fitness of individuals in the 
population and choose them based on their perform-
ance [45]. The selection step in a genetic algorithm is 
critical for choosing the fittest individuals for reproduc-
tion. This step includes several methods, each offering 
unique approaches to individual selection. Among these 
methods are tournament selection [46], roulette wheel 
selection [47], rank-based selection [48] and elitism se-
lection [49], each with its advantages and specific appli-
cations in the artificial evolution process.

We use the Rolette wheel selection; in nature, indi-
viduals best suited to their environment have a compet-
itive edge in obtaining food and mating opportunities, 
thereby increasing the likelihood of passing on their 
genes to the next generation of the species [50].

Crossover: combine genetic information from se-
lected individuals to create new solutions, encouraging 
the exchange of favorable traits [51].

We use a mono crossover and 80% for the crossover 
rate, this means 80% of selected parents will be operat-
ed to extract child, else we will not make crossover.

Mutation: introduce random changes to some solu-
tions, fostering diversity in the population and prevent-
ing stagnation [52].

We use a swap mutation and 1% for the mutation 
rate.

Dynamic Parameter Adaptation 
To avoid stagnation and encourage diversity within 

the population, we implemented a mechanism to adap-
tively adjust the mutation and crossover rates. This 
mechanism is triggered when all individuals in the pop-
ulation become identical (min=max). In such a case, the 
mutation and crossover rates are automatically adjust-
ed according to the following rules:

The mutation rate is increased by 1%
The crossover rate is changed by 3%.

4.1.6 Fitness function 

To evaluate the performance of the individuals, we 
focus on minimizing the space utilized during the allo-
cation of containers. We identify three important com-
ponents to measure this space: bays, stacks, and slots. 
Each component has a coefficient to express its value, 
with minimizing the number of bays being the most sig-
nificant. The best individuals will be selected based on 
the minimum value.

Figure 3 Representation of the chromosome (a)

Figure 4 Representation of the chromosome (b)

Figure 5 Storage of containers by applying the proposed policy
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B: Number of Utilized Bays.
S: Number of the Rest Stacks at last bay.
ES: Number of Empty Slots.

Min F = [100 * (B) – 10 * (S) + ES]

4.2 Local search

4.2.1 Definition 

Local search is an optimization technique that itera-
tively explores neighboring solutions to improve upon 
the current solution. It focuses on refining solutions 
within a restricted, local space rather than exploring the 
entire solution space. The concept dates back to the 
mid-20th century, gaining prominence in the field of 
mathematical optimization [53].

4.2.2 Application 

Local search algorithms have been tailored to ad-
dress optimization challenges in job shop problem [54, 
55, 56] and flow shop scheduling problem [57], aiming 
to iteratively refine schedules and minimize completion 
times. [58] Discuss a multi-objective genetic local search 
for flowshop problem, utilizing a modified local search 
that is applied not only after mutation but also to elite 
solutions from previous population. A key innovation is 
the limit of the number of examined neighborhood solu-
tions, allowing for adjustable computation time. Local 
search techniques are also utilized for the bin packing 
problem [59-62].

We apply a local search after the crossover step, 
where the newly generated children are refined by ex-
ploring their immediate neighbors. This technique helps 
to improve the candidate solutions before adding them to 
the population.

4.3 The proposed heuristic

The problem relates to the number of groups and 
the number of type A containers, where the number of 
possibilities that can be processed equals to NGTA, where 
NG is the number of groups and TA is the number of 

type A containers. However, we propose exploring the 
solution space effectively by proposing a heuristic 
aimed at finding an acceptable solution. Our heuristic 
method offers an effective and pragmatic approach. This 
approach relies on a clever distribution of type A con-
tainers, based on the capacity of each group of type B 
containers. Firstly, we assess the capacity of each group 
of type B containers, represented by the number of con-
tainers it can hold. Then, we distribute the type A con-
tainers in proportion to the capacity of each group.

Example 
Type A Container = 11. Represents the (100%)
Type B Container = 50. Represents the (100%)
Number of groups and number of containers in each 
group = 4; [12/8/16/14]
The number of containers type A, affected to each 
group is:
Group 1: 11*12/50 = 2.6 ≈ 3
Group 2: 11*8/50 = 1.7 ≈ 2
Group 3: 11*16/50 = 3.5 ≈ 3
Group 4: 11*14/50 = 3.08 ≈ 3

Figure 6 Representation of the chromosome by applying the 
proposed heuristic

5 Results and Discussions

The results of the genetic algorithm, the heuristic 
and the policy of the port are presented in Table 3. For 
all instances the used capacity of bay is 18 slots; 3 tiers 
and 6 stacks. The total number of containers generated 
is between 24 and 111. The number of groups varies be-
tween 2, 3 and 4. 

The GAP (1) and (2) are shown in Table 4.
GAP (1): between the Port’s policy results and the 

heuristic results
GAP (2): between the Port’s policy results and the 

genetic algorithm results.
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The results of the genetic algorithm and the policy of 
the port are presented in Table 5, where the number of 
stacks and tiers are changed. This parameter directly af-
fects storage capacity. By adjusting these dimensions, 
we can better understand how variations in the physical 
storage configuration influence the performance of the 
proposed algorithm.

According to Table 3, the use of the genetic algo-
rithm and heuristic has improved the port policy re-

sults in terms of minimizing the storage space used, 
achieving up to a 22% improvement (instance 2) (Ta-
ble 4).

However, in some instances (particularly instances 4 
and 5), we observe an equality in the results obtained. 
In the case where the number of containers in a group is 
18 and the number of levels is 3, it means that 6 stacks 
are optimally used, so there will be no empty slots be-
cause 18/3 equals 6, which explains this equality and 

Table 3 Results

Instances Type A Type B Number of groups Heuristic Port’s Policy Genetic algorithm
1 4 20 2 173 223 173
2 5 24 2 181 234 181
3 6 28 2 202 242 202
4 7 32 2 263 263 263
5 8 36 2 271 324 271
6 9 40 2 292 332 292
7 10 25 3 254 267 254
8 11 30 3 263 284 263
9 12 35 3 294 334 281

10 13 40 3 354 354 354
11 14 45 3 374 374 374
12 15 50 3 463 476 463
13 10 50 4 373 396 373
14 14 56 4 455 456 402
15 18 60 4 473 526 473
16 23 65 4 555 568 502
17 29 70 4 596 649 585
18 34 77 4 676 709 649

Table 4 GAP

Instances Heuristic Port’s policy Genetic algorithm GAP 1 (%) GAP 2 (%)
1 173 223 173 22.4 22.4
2 181 234 181 22.6 22.6
3 202 242 202 16.5 16.5
4 263 263 263 0 0
5 271 324 271 16.3 16.3
6 292 332 292 12 12
7 254 267 254 4.8 4.8
8 263 284 263 7.3 7.3
9 294 334 281 11.9 15.8

10 354 354 354 0 0
11 374 374 374 0 0
12 463 476 463 2.7 2.7
13 373 396 373 5 5
14 455 456 402 <1 11.8
15 473 526 473 10 10
16 555 568 502 2 11.6
17 596 649 585 8 9.8
18 676 709 649 2 8.4
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determines the influence of bay capacity and container 
grouping.

When the number of groups increases to 4 (instances 
14, 16, 17, and 18), the heuristic could not achieve the 
same results as the genetic algorithm, indicating that its 
underlying principle does not always guarantee optimal 
results.

It is important to question the genetic algorithm’s in-
ability to improve results in equal instances. The com-
mon factor we noticed in these instances is the number 
of empty slots, which varies between 1 to 4. This number 
is too low to record significant improvements. The emp-
ty slots are not only the result of container allocation 

but also those left empty due to constraint 6 of our 
policy.

To better illustrate this hypothesis, the graph in Fig-
ure 7 shows the impact of empty slots on improving re-
sults. We particularly observe differences in results 
when empty slots exceed 4. The instances used are pre-
sented in Table 6.

According to Table 5, the results show that the ge-
netic algorithm consistently produces better outcomes, 
with differences ranging from 13 to 82, corresponding 
to an improvement of 3% to 33% in instances 4 and 6. 
Equality is also observed (instance 9), as in the previous 
results (Table 3). 

Table 5 Impact of bay dimensions on algorithm performance

Instances Type A Type B Number of 
stacks

Number of 
tiers Port’s policy Genetic 

Algorithm
GAP 3

(%)
1 5 15 4 3 264 191 27.65
2 6 29 4 3 361 301 16.62
3 7 29 4 3 373 300 19.57
4 8 35 4 3 394 381 3.29
5 10 29 4 3 396 383 3.28
6 5 15 5 4 246 164 33.33
7 6 29 5 4 255 191 25.09
8 7 29 5 4 254 204 19.68
9 8 35 5 4 261 261 0

10 10 39 5 4 347 283 18.44

Table 6 The utilized instances

Instances Number of empty Heuristic Genetic algorithm
2 1 181 181
3 2 202 202
4 3 263 263
7 4 254 254

16 5 555 502
17 6 596 585
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Figure 7 Impact of empty slots
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The genetic algorithm’s results were tested under 
the influence of several factors, including variations in 
the number of containers of each type relative to the to-
tal number, changes in the number of groups for the 
second type, and different bay configurations. All these 
factors led to changes in the improvement percentage 
while consistently maintaining positive improvements 
compared to the port’s policy.

6 Conclusion 

This study addresses the issue of container storage 
in maritime terminal, emphasizing the importance of 
minimizing reshuffling and ensuring the rapid retrieval 
of containers. The use of the genetic algorithm and heu-
ristic has allowed us to achieve effective and significant 
improvements in results. This improvement is particu-
larly important for ports with limited space, as it helps 
avoid delays during the container retrieval process and 
reduces the risk of accidents related to congestion.

Our results highlight the relationship between the 
number of tiers in a bay and the number of containers 
in each group as a determining factor. In configurations 
where the number of containers is perfectly divisible by 
the number of tiers, there are fewer opportunities for 
improvement.

Other ports also aim to optimize space utilization, 
which is a common goal. However, in these pots, the is-
sue of reshuffling might become even more critical than 
space constraints. This study discusses two types of 
containers, A and B, representing individual and 
grouped containers, respectively. This classification is 
applicable to various ports, allowing them to benefit 
from this research by adapting the policy to their spe-
cific conditions. The policy can be adjusted based on the 
proportion of A and B containers relative to the total 
number of containers. Ports with a lower proportion of 
type A containers will benefit more from reduced re-
shuffling when these containers are stored above type B 
containers.

The problem of container reshuffling is implicitly in-
tegrated into our work; a direct extension of this prob-
lem could be addressed. We recommend shared storage 
between the intermodal logistics company (SIL) and the 
Port of Annaba, especially for containers with a high 
dwell time or that may exceed the free time limit.
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Appendix A: Explanation of Retrieval and 
Reshuffling Process

Definition of Reshuffling

Reshuffling refers to the process of moving contain-
ers from one location to another to facilitate the retriev-
al of specific containers. 

Capacity of bay 

The capacity of a bay is defined by the formula:

Capacity of Bay = Number of Tiers * Number of Stacks.

This capacity represents the number of slots availa-
ble in the bay, with each slot capable of holding a single 
container. During the retrieval process, to avoid confu-
sion between containers, reshuffling is performed with-
in the same bay. This means containers are moved from 
one stack to another within the same bay.

Empty Slots

To facilitate the retrieval of containers, it is essential 
to leave empty slots during the placement of containers. 
This is because the retrieval order of the containers is 
not known in advance, and having empty slots allows 
for easier reshuffling. The number of empty slots re-
quired depends on the number of tiers in the bay.

For instance, if the number of tiers is 3, then it is nec-
essary to leave two empty slots. This is to anticipate the 
need to move containers that are in tier number 1 
(those at the bottom of the stack).

Example 

The capacity of the bay is 9 slots (3 tiers and 3 
stacks). We have 7 containers. We assume that the order 
of retrieval is: 2/5/1/3/4/6/7. To retrieve the container 
number 2 we need firstly to lift-up the containers 6 and 
4 (Figure A), and then put them on top of container (3), 
after that it is possible to lift up container (2). 

In this example, the stages followed for container re-
trieval adhere to general principles and do not involve 
any heuristics.

Table A Total number of movements

Container number 2 5 1 3 4 6 7
Number of 
reshuffles 2 2 1 2 1 0 0

Total number of 
movements 3 3 2 3 2 1 1 15

The number of reshuffle is equal to 0 if only the total 
number of movements is equal to the total number of 
containers.
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