Experimental Study on the Effect of Single Flow Disturber on the Performance of the Straight-Bladed Hydrokinetic Turbine at Low Current Speed
Keywords:
Single Flow Disturber, Straight-bladed, Hydrokinetic Turbine, Low Current Speed, Experimental StudyAbstract
Indonesian Marine Energy Association 2014 provided the results of ratifying the potential of ocean current energy in Indonesia of 17,989 MW. The amount is quite large for the results of several potential points in the territory of Indonesia. However, the potential of ocean currents in Indonesia has not been utilized optimally, even though the current turbine technology is developing rapidly in the world. The existing turbine technology that is already available worldwide cannot be applied directly in Indonesia. This is because the water condition in Indonesia is classified as low-speed current, unlike some countries in the world which are classified as high-speed current. Therefore, a turbine that can work in the condition of the territorial waters in Indonesia, in general, with a low current speed is needed. The turbine technology used in this study consists of turbine A (without a flow disturber) and turbine B (with a single flow disturber). The purpose of this study was to determine the increase in turbine performance at low current speeds. The method used in this study was an in-situ experiment because it was closer to the actual conditions. The results obtained from this study indicated that the addition of a single flow disturber could increase turbine performance at all variations of current speed, namely 0.4, 0.88, and 1 m/s. The most exciting result was that under the low current speed of 0.4 m/s, adding a single flow disturber could increase the ability to self-start from 0 rpm to 7.180 rpm and efficiency from 0 to 4%. In addition, at a current speed of 0.88 m/s with the addition of a single flow disturber, it could increase efficiency from 10.8% to 11.1%. At a current speed of 1 m/s with the addition of a single flow disturber, it could increase efficiency from 16.6% to 18%. That is, turbine B (with a single flow disturber) is very suitable to be applied in the territorial waters of Indonesia, which tend to have low current velocity.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Editor
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Scientific Journal of Maritime Research understands the need for authors to disseminate and maximize the impact of their research. When submitting an article for publishing in Scientific Journal of Maritime Research, it implies that the Corresponding Author transfers, with the consent of all Coauthors, the copyright ownership in the referenced submission, including all versions in any format now known or hereafter developed, to the Scientific Journal of Maritime Research.
Copyright protects your original work and research material and prevents others from using it without your permission. Others will be required to credit you and your work properly, thus increasing its impact. Should your submission be rejected or withdrawn prior to acceptance for publication by Scientific Journal of Maritime Research, this transfer will be null and void.
Authors, users or readers of an article need clear instructions on how they can use the article. Scientific Journal of Maritime Research uses the Creative Commons Attribution-NonCommercial-NoDerivatives (CC-BY-NC-ND) 4.0 International License, which governs the use, publishing and distribution of articles by authors, publishers and the wider general public.
The authors are allowed to post a digital file of the published article, or the link to the published article (Scientific Journal of Maritime Research web page) may be made publicly available on websites or repositories, such as the Author’s personal website, preprint servers, university networks or primary employer’s institutional websites, third party institutional or subject-based repositories, and conference websites that feature presentations by the Author(s) based on the published article, under the condition that the article is posted in its unaltered Scientific Journal of Maritime Research form, exclusively for non-commercial purposes.