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Abstract
Shotcreting is a popular construction technique with wide-ranging applications in mining and civil engineering. Com-
pressive strength is a primary mechanical property of shotcrete with particular importance for project safety, which 
highly depends on its mix design. However, in practice, there is no reliable and accurate method to predict this strength. 
In this study, existing experimental data related to shotcretes with 59 different mix designs are used to develop a series 
of soft computing methodologies, including individual artificial neural network, support vector regression, and M5P 
model tree and their hybrids with the fuzzy c-means clustering algorithm so as to predict the 28-day compressive strength 
of shotcrete. Analysis of the results shows the superiority of the hybrid model over the individual models in predicting 
the compressive strength of shotcrete. Overall, data clustering prior to use of machine learning techniques leads to cer-
tain improvement in their performance and reliability and generalizability of their results. In particular, the M5P model 
tree exhibits excellent capability in anticipating the compressive strength of shotcrete.
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1. Introduction

The importance of concrete as a construction material 
is indisputable. Sprayed concrete or shotcrete is a variant 
of concrete with an over 50 year history of use in rock/
soil support and stabilization (Moffat et al., 2017). 
Shotcrete can be described as a concrete or mortar that is 
sprayed through a high-pressure nozzle onto the surface 
at high velocity (ACI, 2005). Due to the compressed air 
used in the shotcreting process, the hardened shotcrete 
has slightly different properties than ordinary concrete. 
Thanks to properties such as high initial strength, flexi-
bility, and good durability, shotcrete has found extensive 
application in mining and construction activities 
(Franzen et al., 2001; Kalhori & Bagherpour, 2017; 
Thomas, 2008; Watanabe et al., 2010). Compressive 
strength is an important property of shotcrete that large-
ly depends on its mix design. Nevertheless, quality of 
mix design often depends on the experience of the shot-
creting crew, who rely on costly and time-consuming 
trial and errors to adjust the mix (ACI, 2005). Shotcrete 
strength is a function of many parameters including wa-
ter-cement ratio, quantities of fine and coarse aggre-
gates, admixtures, etc. Due to the large number of such 
parameters, it seems difficult to predict shotcrete 

strength. There are several empirical relations for pre-
dicting the strength of ordinary concrete, but the validity 
of these models for predicting the compressive strength 
of shotcrete is uncertain (Abrams, 1919; Janković et 
al., 2011). The prediction of shotcrete strength before 
shotcreting can save time, reduce operating costs, and 
improve operational planning and quality control.

Nowadays, data mining techniques are growing rap-
idly for data analysis in many fields of science. In line 
with this trend, these techniques have found widespread 
application in some branches of civil and mining engi-
neering. One of these applications is the prediction of the 
mechanical and physical properties of cement-based ma-
terials. The ability of machine learning methods to pre-
dict concrete properties such as compressive strength of 
high-performance concrete, the tensile strength of steel 
fiber reinforced concrete, the elastic modulus of self-
compacting concrete, etc. has been extensively re-
searched (Behnood et al., 2015; Cheng et al., 2014; 
Golafshani & Ashour, 2016; Yücel & Özel, 2012). In 
the case of compressive strength, the different data min-
ing techniques used for prediction include an artificial 
neural network, a support vector machine, a classification 
and regression tree, neuro-fuzzy inference, and genetic 
programming. A summarized list of major publications in 
this particular line of research is provided in Table 1. In 
the case of shotcrete, however, the progress of research 
has been limited by the difference in properties and re-
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Table 1: Some recent studies to predict compressive strength by machine learning techniques

Authors Type of Material Inputs Techniques Performance 
measure (R2)

Sarıdemir (2009)  
(Sarıdemir, 2009)

Mortars containing 
metakaolin

AS, MK%, WB, SP%, BS ANN
FL

0.9738
0.9659

Sobhani (2010)  
(Jafar Sobhani et al., 2010)

No-slump Concrete C, SF, W, FA, CA, Fi, WB MR
ANN
ANFIS

0.6972
0.8974
0.8972

Sarıdemir (2010)  
(Sarıdemir, 2010)

Concretes containing 
rice husk ash

AS, C(30), C(40), RHA, W, 
SP, A

GP 0.9639

Ahangar-Asr et al. (2011)  
(Ahangar-Asr et al., 2011)

Rubber Concrete C, SF, W, SP, CA, FA, CR, 
TC

MR
GP
ANN
EPR

0.755
0.964
0.999
0.990

Chou et al. (2011)  
(J. Chou et al., 2010)

High-Performance 
Concrete

AS, W, C, SP, BFS, F,  
FA, CA

ANN
SVR
MR
MART
BRT

0.9091
0.8858
0.6112
0.9108
0.8904

Madandoust et al. (2012) 
(Madandoust et al., 2012)

Concrete AS, SA, D, L/D, CS ANN
ANFIS

0.969
0.988

Safarzadegan Gilan et al. (2012) 
(Safarzadegan Gilan et al., 2012)

Concretes containing 
metakaolin

AS, CA, FA, MK, W, C SVR+PSO
ANFIS

0.941
0.823

Sobhani et al. (2013)  
(J Sobhani et al., 2013)

no-slump Concrete C, SF, W, FA, CA, Fi ANN+GA
SVR+GA

0.964
0.964

Martins and Camões (2013) (Martins 
& Camões, 2013)

Concrete containing 
fly ash

F%, FC, SF%, TCM, FA, 
CA, SP%, AS

RT
MR
ANN
SVR
k-NN

0.776
0.817
0.867
0.858
0.750

Yuan et al. (2014)  
(Yuan et al., 2014)

Concrete C, BFS, F, W, SP, CA, FA ANN
ANN+GA
ANFIS

0.680
0.813
0.950

Nikoo et al. (2015) (Nikoo, Torabian 
Moghadam, et al., 2015)

Concrete WB, MSS, G, C, S3/4, 
S3/8, CSS

ANN+GA
MR

0.9805
0.8873

Nikoo et al. (2015)  
(Nikoo, Zarfam, et al., 2015)

Concrete WB, MSG, S, C, Sl SOFM
MR
ANN

0.95
0.86
0.61

Ayaz et al. (2015) (Ayaz et al., 2015) High-Volume 
Mineral-Admixtured 
Concrete

AS, C, F, BFS M5 rule
M5P Tree

0.97
0.966

Khademi et al. (2016)  
(Khademi et al., 2017)

Concrete WB, MSS, G, C, S3/4, 
S3/8, CSS

MR
ANN
ANFIS

0.7456
0.9226
0.8212

Chithra et al. (2016)  
(Chithra et al., 2016)

High Performance 
Concrete containing 
nano silica and copper 
slag

C, NS, FA, COS, AS, SP MR
ANN

0.6717
0.9980

quirements of shotcrete as compared to ordinary con-
crete. For example, coarse aggregates used in shotcretes 
are smaller than those typically used in concretes, the 
initial compressive strength is more important for shot-
crete than for ordinary concrete, and the use of com-
pressed air in shotcreting results in a widespread appear-
ance of small air bubbles in the hardened shotcrete (Wa-
tanabe et al., 2010). Considering the good track record 

of machine learning algorithms in predicting the com-
pressive strength of concretes and the widespread use of 
shotcrete in mining and civil engineering activities, the 
authors of this paper utilized the experimental data col-
lected by laboratory testing to develop several models for 
predicting the compressive strength of shotcrete.

In the majority of studies in this line of research, arti-
ficial intelligence techniques have been utilized in their 
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Authors Type of Material Inputs Techniques Performance 
measure (R2)

Hoang et al. (2016)  
(Hoang et al., 2016)

High Performance 
Concrete

C, FA, CA(5-10mm), 
CA(10-20mm), W, SP, AS

GPR
SVR
ANN

0.9
0.89
0.85

Asteris and Kolovos (2017)  
(Asteris & Kolovos, 2017)

Self-compacting 
Concrete

C, CA, FA, W, LP, F, BFS, 
SF, RHA, SP, VMA

ANN 0.966

Behnood et al. (2017)  
(Behnood et al., 2017)

Normal and  
High-Performance 
Concretes

C, F, BFS, W, SP, CA,  
FA, AS

M5P Tree 0.900

Tenza-Abril et al.
(2018) (Tenza-Abril et al., 2018)

segregated 
lightweight concrete

C, W, FA ANN 0.825

Naderpour et al.
(2018) (Naderpour et al., 2018)

recycled aggregate 
concrete

WCR, WA, FA, NCA, 
RCA, WT

ANN 0.796

Hammoudi et al.
(2019)  
(Hammoudi et al., 2019)

recycled aggregate 
concrete

C, NCA, RCA, Sl RSM
ANN

0.9900
0.9980

Kalhori and Bagherpour
(2019)  
(Kalhori & Bagherpour, 2019)

shotcrete C, W, FA, CA, w/c, mc ANN
SVR

0.8731
0.8629

Feng et al.
(2020) (Feng et al., 2020)

Concrete C, W, CA, FA, SP, BFS,  
F, CT

AdaBoost
ANN
SVM

0.982
0.903
0.855

Kaloop et al.
(2020) (Kaloop et al., 2020)

High Performance 
Concrete

C, F, BFS, W, SP, CA, FA, 
Age

MARS
MARS-GBM
MARS-KRR
MARS-GPR

0.87
0.984
0.926
0.892

Ganesh and Muthukannan
(2021)  
(Ganesh & Muthukannan, 2021)

high performance 
sustainable optimized 
fiber reinforced 
geopolymer concrete

Age, CT, DOF ANN 0.98

Zho et al.
(2021) (Zhu et al., 2021)

recycled aggregate 
concrete

CC, CI, WA, w/c GCA 0.92

AS: Age of Specimen, MK: Metakaolin replacement, WB: Water-Binder ratio, SP: Superplasticizer, BS: Binder-Sand ratio, C: 
Cement, SF: Silica Fume, W: Water, FA: Fine aggregate, CA: Coarse aggregate, NCA: natural coarse aggregate, RCA: recycled 
coarse aggregate, Fi: Filler, RHA: Rice Husk Ash, A: Aggregate, CT: curing time, CR: Crumb Rubber, TC: Tyre Chip, BFS: 
Blast-furnace slag, F: Fly ash, SA: Size of Aggregate, D: Core Diameter, DOF: dosage of fiber, L/D: Length-to-Diameter ratio, 
CS: Core Strength, FC: Fly ash Characteristics, TCM: Total Cementitious Material, MSS: Maximum Size of Sand, G: Gravel, 
S: Sand, CSS: Coefficient of Soft Sand, MSG: Maximum Size of Gravel, Sl: Slump, NS: Nano Silica, COS: Copper Slag, LP: 
Limestone Powder, VMA: Viscosity Modifying Admixtures, CC: clay content, CI: crush index, WA: water absorption, WT: 
water-total material ratio, w/c: water to cement ratio, and mc: micro-silica.

ANN: Artificial neural network, FL: Fuzzy logic, MR: Multiple Regression, ANFIS: Adaptive neuro-fuzzy inference system, 
GP: Genetic programming, EPR: Evolutionary polynomial regression, SVR: Support vector regression, MART: Multiple addi-
tive Regression trees, BRT: Bagging regression trees, PSO: Particle swarm optimization, GA: Genetic algorithm, RT: Regres-
sion Trees, RSM: response surface methodology, k-NN: k-Nearest Neighbours, SOFM: Self Organization Feature Map, GPR: 
Gaussian Process Regression, MARS: Multivariate adaptive regression splines, GBM: Gradient boosting machines, KRR: 
Kernel ridge regression, and GCA: gray correlation analysis.

basic form or with minor modifications (J.-S. Chou & 
Pham, 2013). Clearly, given the differences in the con-
stituting parts of cement-based materials in different 
parts of the world, these techniques are not powerful 
enough to be further extended for all kinds of concrete. 
Using a preliminary phase of data clustering based on 
the greatest similarity between records, prior to data pro-
cessing with artificial intelligence techniques, may be 

able to improve the prediction power and precision of 
data mining methods.

Despite the widespread use of shotcrete in mining and 
construction activities during the past decades, there is 
still no strong quantitative method for the realistic an-
ticipation of the compressive strength of shotcrete based 
on its mix design. Therefore, this study aimed to develop 
a probabilistic model for the anticipation of the 28-day 

Table 1: Continued
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compressive strength of shotcrete. This aim was pursued 
by the use of three artificial intelligence techniques, 
namely artificial neural network, support vector regres-
sion, and M5P model tree, as well as their hybrids with a 
clustering method called fuzzy C-means (FCM). In the 
hybrid models, the aforementioned artificial intelligence 
techniques are applied to the clusters constructed by 
FCM rather than the entire dataset. In the end, a com-
parison is made between the performance of individual 
models and their hybrids in predicting the compressive 
strengths of shotcrete. The experimental data used in this 
research is a dataset compiled from the records of 59 
laboratory tests conducted during the construction of the 
Karun-3 dam project in Iran.

2. Methodology

Machine learning is the main branch of artificial intel-
ligence that utilizes learning methods to recognize com-
plex patterns in experimental data (Taffese & Sistonen, 
2017). This method has been successfully used for the 
simulation of material behavior in a variety of fields (J.-
S. Chou et al., 2014). In this study, the compressive 
strength of shotcrete is predicted with three machine 
learning methodologies: artificial neural network, sup-
port vector machine, and M5P model tree, with FCM 
used in advance to cluster the data. A brief description of 
the methods utilized for prediction is provided in the fol-
lowing section.

2.1. Artificial neural network (ANN)

An artificial neural network is an information pro-
cessing system with functional characteristics similar to 
biological neural networks. Being generalizations of 
mathematical models of the human brain or neurobiol-
ogy, artificial neural networks are based on the following 
assumptions:

1- information is processed in a large number of sim-
ple elements called neurons. 2- Signals are transmitted 
between neurons along the communication link. 3- Each 
communication link has a given weight which is multi-
plied by the transmitted signal in a general neural net-
work. 4- Every neuron adds an activation function (usu-
ally a non-linear function) to the input (the sum of 
weighted input signals) in order to determine the output 
signal (Friedman & Kandel, 1999). ANNs are charac-
terized by (1) the pattern of the relationship between 
neurons (architecture), (2) how connections are weight-
ed (training method or algorithm), and (3) the activation 
(transmission) function. Neural networks are particular-
ly useful for the modeling of phenomena where there is 
no specific definition of or clear understanding of inter-
nal processes (Beale & Jackson, 1990; Fausett, 1994). 
Feedforward neural network is the best-known variant 
of ANN and has widespread application in many applied 
sciences. Generally, feed-forward networks, which are 
also known as multilayer perceptron (MLP), consist of 

one input layer, one or more hidden layers and one out-
put layer (Adhikary & Mutsuyoshi, 2006).

2.2. Support vector regression (SVR)

First developed in 1995 by Vapnik, a support vector 
machine is a supervised learning model with two varia-
tions: support vector regression (SVR) and support vec-
tor classification (SVC) (Cortes & Vapnik, 1995). SVR 
is known for its substantial ability to solve nonlinear 
problems and has been successfully used for such pur-
pose in various fields (Ghasemi, Kalhori, & Bagher-
pour, 2016). The core concept of SVR is to map the in-
put data to an n-dimensional feature space by means of a 
non-linear mapping procedure, which is usually a kernel 
function (Golafshani & Behnood, 2018). As a result, a 
nonlinear solution in lower-dimensional input space will 
be corresponding to a linear solution in the higher- 
-dimensional feature space. The kernel function to be 
used for mapping can be, for example, a linear kernel 
function , a polynomial kernel function 

, a radial basis function (RBF) 
, etc. (Gunn, 1998). In 

highly nonlinear spaces, RBF usually yields better re-
sults than other kernel functions, so it is also more suit-
able for the purpose of this study. The generalizability of 
SVR results highly depends on its learning parameters, 
such as the penalty factor (C) and the deviation (width) 
of the radial basis function kernel (g).

2.3. M5P model tree algorithm

The concept of model tree called M5 was first intro-
duced in 1992 by Quinlan as a new learning model for 
prediction problems (Quinlan, 1992). Model trees ob-
tain a structural display of data and a piecewise linear fit 
of the class. They are in fact a generalized form of the 
decision tree or regression tree in which discrete class 
labels or numerical values in the leaves are replaced by 
linear regression functions. These models are particu-
larly suitable for handling large volumes of data sets 
with a high number of features and dimensions. The pre-
diction accuracy of model trees is comparable to other 
data mining techniques, such as ANN and CART. How-
ever, the real advantage of model trees is their ability to 
provide a description of inherent patterns of relation-
ships between data with the help of rules and regression 
equations; an ability that is absent in other intelligent 
models, such as ANN and SVM, where those relations 
remain hidden. Even though model trees are simple, 
they are a robust and accurate method for simulating the 
patterns and relationships for large data sets (Etemad-
Shahidi & Ghaemi, 2011; Etemad-Shahidi & Mah-
joobi, 2009; Ghasemi, Kalhori, Bagherpour, et al., 
2016). Introduced by Wang and Witten, the M5P algo-
rithm is a modified version of the standard M5 algorithm 
and consists of four main steps (Wang & Witten, 1997). 
In the first step of M5P, a regression tree is constructed 
by splitting the instance space into several sub-spaces. 
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Criteria for division are used so that they minimize the 
intra-subset variation in the values down from the root 
through the branch to the node. The standard deviation 
of the values that reach through the branch from the root 
to the node is used to measure the variation. The splitting 
criterion is the minimization of error within each subset, 
which is measured by the standard deviation of the in-
stance values that reach a node through branches, start-
ing from the root. This is achieved by calculating the 
expected reduction in error from testing each attribute at 
the node and selecting the attribute that maximizes the 
expected error reduction. This splitting process stops 
when the output values of the instances that reach a node 
vary by less than 5% of the standard deviation of the 
original dataset, or when only a few instances remain. 
The standard deviation reduction (SDR) is calculated by 
Equation 1 (Khoshnoudian et al., 2013).

  (1)

where T is the set of records that reach the node, Ti are 
the sets that are resulted from splitting the node accord-
ing to the chosen attribute, and sd denotes the standard 
deviation (Wang & Witten, 1997). In the next step, 
M5P calculates, for every interior node, a linear multiple 
regression model based on the values pertaining to that 
node and all the attributes that participate in tests in the 
subtree rooted at that node. Then, linear regression mod-
els are simplified by removing the attributes if this re-
sults in a lower expected error for future data. After this 
simplification, a pruning technique is used to overcome 
the over-training problem. The tree is pruned from the 
leaves if SDR for linear model in the root of sub-tree is 
smaller or equal to the expected error for the sub-tree. In 
the final step, a smoothing process is performed to com-
pensate for sharp discontinuities that may occur between 
the adjacent linear models in the leaves of the pruned 
tree. This smoothing process often improves the predic-
tion, especially for models based on training sets con-
taining a small number of instances (Bonakdar & 
Etemad-Shahidi, 2011).

2.4. Fuzzy c-means (FCM)

The fuzzy c-means (FCM) algorithm, first developed 
by Dunn and then improved by Bezdek, is one of the 

well-known and most widely used fuzzy clustering tech-
niques (Bezdek, 1981; Dunn, 1973). The primary mo-
tive for development of FCM was to address the defi-
ciency in working with overlapping groups shown by 
the hard algorithm k-means (Silva Filho et al., 2015). 
Therefore, in accordance with fuzzy logic, each data can 
have a membership value between [0,1], and can belong 
to two or more clusters (Ren et al., 2019). In FCM, each 
cluster is described with respect to its center and the dis-
tance between a point and a cluster is measured by Eu-
clidean distance. FCM relies on three basic operators: a 
set of prototypes V, a fuzzy partition matrix U, and an 
objective function J (U, V). This method operates based 
on the minimization of objective function 2:

  (2)

where xj is the jth measured data point or object, vi is the 
center of cluster i, uij is the membership degree of xj with 
respect to cluster i, m is a weight exponent controlling 
the degree of fuzzification, and  is the Euclidean norm, 
which represents the similarity between any measured 
data and the center. In FCM, the minimization process is 
performed by an iterative algorithm. In each iteration, 
the values of uij and vi are updated by formulas 3 and 4:

  (3)

  (4)

Once FCM processing is complete, membership de-
grees decide which individual belongs to which cluster. 
Each point joins to each cluster with a certain member-
ship degree, but the cluster which gets the highest mem-
bership degree constitutes the actual cluster of that point 
(Esme & Karlik, 2016).

2.5. Data Preparation and Description

As mentioned earlier, this study uses a dataset com-
piled from the records of 59 laboratory tests, each with 

Table 2: Mix components and range of input and output parameters.

Input variables Minimum Average Maximum Standard deviation
Cement (kg/m3) 290 400 570 70.852
Water (kg/m3) 130 196.96 247 27.02
Fine aggregate (kg/m3) 770 1058.39 1363 229.75
Coarse aggregate (kg/m3) 418 456.83 555 45.18
Micro silica (kg/m3) 0 33.59 81 21.83
Output variable
28-days Compressive Strength of shotcrete (kg/cm2) 277 397.64 547 70.84



Torkan, M; Kalhori, H; Jalalian, M.H. 38

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2021,  
pp. 33-48, DOI: 10.17794/rgn.2021.5.4

Figure 1: Histograms of: (a) water; (b) cement; (c) fine aggregate; (d) coarse aggregate; (e) Micro silica;  
(f) compressive strength.

(a) (b)

(c) (d)

(e) (f)
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three replicates, conducted based on different shotcrete 
mix designs during the construction of Karun-3 dam 
project in Iran. In these data, five mix design parameters, 
namely the quantities of cement, water, fine aggregates, 
coarse aggregates, and micro silica, were used as input 
variables, and the 28-day compressive strength of shot-
crete was considered as the output variable. The statisti-
cal description of these variables is provided in Table 2, 
and their histogram is illustrated in Figure 1.

To investigate the prediction ability of the developed 
models, data were randomly divided into two separate 
groups, one for training and another for testing purpose. 
The training dataset consisted of 47 (80%) input-output 
pairs, which were used as training instances. The testing 
dataset consisted of 12 (20%) input-output pairs, which 
were withheld from the training process and were used 
only at the testing stage to gauge the prediction ability of 
the models.

Table 3: General characteristics of the developed Neural network.

Type Training  
method/algorithm

No. of neurons per layers Activation 
function in HL

Activation function 
in output layerInput Hidden Output

Feed-forward  
back-propagation network

Supervised/Levenberg  
– Marquardt BP 5 7 1 Tansig Linear transfer 

function

Figure 2: Architecture of the proposed Neural network.

Figure 3: Comparison of measured and predicted values by 
ANN model for testing data.

Figure 4: Comparison of measured and predicted values by 
SVR model for testing data.
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2.6. Performance Evaluation Criteria

To estimate the anticipation accuracy of the models, 
their outputs needed to be compared with the actual val-
ues measured in the tests. This comparison was made 
based on three statistical measures: the coefficient of de-

termination (R2), the Mean Absolute Percentage Error 
(MAPE), and the Root Mean Squared Error (RMSE). 
The coefficient of determination represents the degree of 
similarity between the predicted and measured values. 
The closer R2 is to one, the better the prediction power. 
The MAPE is another measure of prediction accuracy, 

Figure 5: Structure of the unpruned M5P model tree.

Figure 6: Structure of the pruned M5P model tree.

Table 4: Linear models (LMs) for the M5P model trees.

No. Linear regression model

U
np

ru
ne

d

LM 1
LM 2
LM 3
LM 4
LM 5
LM 6
LM 7
LM 8
LM 9
LM 10
LM 11
LM 12
LM 13
LM 14
LM 15

UCS28 = 0.3995 * cement - 1.7633 * water - 0.0183 * F.A. + 0.1764 * C.A + 0.6503 * Micro SiO2 + 469.5524
UCS28 = 0.3556 * cement - 1.536 * water - 0.0183 * F.A. + 0.1764 * C.A + 0.6503 * Micro SiO2 + 439.3328
UCS28 = 0.3556 * cement - 1.536 * water - 0.0183 * F.A. + 0.1764 * C.A + 0.6503 * Micro SiO2 + 439.0821
UCS28 = 0.3556 * cement - 1.536 * water - 0.0183 * F.A. + 0.1764 * C.A + 0.6503 * Micro SiO2 + 440.0891
UCS28 = 0.1887 * cement - 0.6071 * water - 0.0155 * F.A. + 0.1764 * C.A + 0.8274 * Micro SiO2 + 310.9208
UCS28 = 0.1887 * cement - 0.6071 * water - 0.0155 * F.A. + 0.1764 * C.A + 0.8274 * Micro SiO2 + 310.3825
UCS28 = 0.1887 * cement - 0.6071 * water - 0.0155 * F.A. + 0.1764 * C.A + 0.8274 * Micro SiO2 + 310.2546
UCS28 = 0.243 * cement - 0.6071 * water - 0.0155 * F.A. + 0.1764 * C.A + 0.8106 * Micro SiO2 + 296.5497
UCS28 = 0.243 * cement - 0.6071 * water - 0.0155 * F.A. + 0.1764 * C.A + 0.8106 * Micro SiO2 + 296.5584
UCS28 = 0.2551 * cement - 0.6071 * water - 0.0155 * F.A. + 0.1764 * C.A + 0.8106 * Micro SiO2 + 293.3946
UCS28 = 0.28 * cement - 0.3591 * water + 0.2618 * C.A + 1.1882 * Micro SiO2 + 217.3071
UCS28 = 0.28 * cement - 0.3591 * water + 0.2618 * C.A + 1.0253 * Micro SiO2 + 235.5868
UCS28 = 0.28 * cement - 0.3591 * water + 0.2618 * C.A + 1.0253 * Micro SiO2 + 234.8725
UCS28 = 0.28 * cement - 0.3591 * water + 0.2618 * C.A + 1.0253 * Micro SiO2 + 235.1259
UCS28 = 0.28 * cement - 0.3591 * water + 0.2618 * C.A + 1.0253 * Micro SiO2 + 232.934

Pr
un

ed

LM 1
LM 2
LM 3

UCS28 = 0.4557 * cement - 2.0542 * water - 0.0183 * F.A. + 0.1764 * C.A + 0.6503 * Micro SiO2 + 493.3872
UCS28 = 0.1887 * cement - 0.6071 * water - 0.0155 * F.A. + 0.1764 * C.A + 0.9397 * Micro SiO2 + 310.4558
UCS28 = 0.28 * cement - 0.3591 * water + 0.2618 * C.A + 1.3348 * Micro SiO2 + 218.1533

UCS: Uniaxial Compressive Strength of shotcrete
cement: Cement content
water: Water content
F.A.: Fine Aggregate content
C.A.: Coarse Aggregate content
micro silica: Micro silica content

particularly for quantitative predictions, and is usually 
expressed as a percentage. RMSE is the mean of the per-
pendicular distance of a given data point from the fitted 
line. For both MAPE and RMSE, the closer the measure 
is to zero, the higher the accuracy of the model. These 
statistical parameters can be obtained from equations 5, 
6 and 7.

  (5)
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quality of aggregates, admixtures and plasticizers, etc., 
which all need to be incorporated into the model for it to 
make accurate predictions. However, this is almost im-
possible because of the diversity and variability of these 
parameters, which require us to incorporate a large num-
ber of inputs, which in turn leads to overlearning and 
overcomplexity of the model. Therefore, for modelling, 
we handpicked some of the primary determinants of 
compressive strength of shotcrete including the quanti-
ties of cement, water, fine aggregates, coarse aggregates, 
and micro silica. In view of our objective, which was to 
inquire the possibility of using intelligent methods to 
predict the compressive strength of shotcrete, and also 
assess the effect of using a preliminary data clustering 
phase prior to data mining technique on the prediction 
accuracy, development of the models is described in two 
section: one dedicated to individual models, and another 
to hybrid models, and finally, all models are compared 
based on the aforementioned statistical measures.

3.1. Development of individual models

This section describes the development of three ma-
chine learning models used as benchmark models, 
namely artificial neural network (ANN), support vector 
regression (SVR) and M5P model tree.

3.1.1. Artificial neural network

ANN models can be developed with various algorithms 
and topologies. ANN architecture consists of an input 
layer, an output layer, and hidden layers, each containing 
a number of neurons linked through weighted connec-
tions. The number of neurons in the input and output lay-
ers is equal to the number of input and output variables. 
However, the number of hidden layers and the neurons of 
each hidden layer is variable and greatly affects the per-
formance of the model. Using a single hidden layer re-
duces the complexity of the model. Determining the num-
ber of hidden layer neurons is an important and sensitive 
part of the development of ANN model. This issue has 
been investigated by numerous researchers, who have 
proposed several methods and equations for this purpose 
(Caudill, 1988; Hecht-Nielsen, 1989; Kaastra & Boyd, 
1996; Kanellopoulos & Wilkinson, 1997; Ripley, 1993). 
Considering 2Ni+1 as the maximum number of neurons 
required in the hidden layer, we tested the model with dif-
ferent numbers of neurons and chose the one with the best 
performance. The schematic structure and general charac-
teristics of the ANN model used in this study are present-
ed in Figure 2 and Table 3, respectively. As can be seen, 
the single hidden layer of this ANN model contains 7 neu-
rons. The ANN model was implemented in MATLAB. As 
noted above, approximately 80% of data was used to train 
the model and the remaining 20% was reserved for test-
ing. In Figure 3, the outputs of this ANN model are com-
pared with the measured compressive strength values.

Figure 8: Comparison of measured and predicted values by 
pruned M5P model tree for testing data.

Figure 7: Comparison of measured and predicted values by 
unpruned M5P model tree for testing data.

  (6)

  (7)

Where Ti denotes the measured values, Pi denotes the 
predicted value,  is the mean of the measured values, 
and N is the total number of input data.

3. Modelling and results

The compressive strength of shotcrete is a function of 
several parameters, including the amount of different 
components, curing conditions, type of cement, type and 
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3.1.2. Support vector regression

Like the ANN model, the SVR model was developed 
with five input parameters (quantities of cement, water, 
fine aggregates, coarse aggregates, and micro silica) and 
one output parameter (28-day compressive strength). 
The LIBSVM toolbox, developed by Chang and Lin 
(Chang & Lin, 2011), was used to develop the SVR 
model in the MATLAB environment. Given the superi-
ority of the RBF kernel over the alternatives, the model 
was developed with this function. Learning parameters 
including the penalty factor and the deviation (width) of 
the RBF kernel function were determined via a grid 
searching method coupled with cross-validation. The 
model was trained with 47 data instances and evaluated 
using 12 data instances. In Figure 4, the outputs of this 
SVR model are compared with the measured compres-
sive strength values.

3.1.3 M5P model tree

The M5P model tree for anticipation of the compres-
sive strength of shotcrete was run in the machine learn-

Figure 10: Comparison of measured and predicted values by 
FCM-ANN model for testing data.

Figure 11: Comparison of measured and predicted values by 
FCM-SVR model for testing data.

Figure 9: Methodology of the proposed models.

ing utility software WEKA. The optimum value of 
threshold called minNumInstances, which represents the 
minimum number of instances allowed to be placed at 
each leaf and has a significant impact on the model per-
formance, was obtained by trial and error. The M5P 
model tree was developed in two modes, pruned and un-
pruned, with minNumInstances set to 6. Like other mod-
els, the M5P model tree was trained with the training 
dataset set then evaluated by the test dataset. Diagrams 
of the pruned and unpruned M5P model trees for predic-
tion of the compressive strength of shotcrete are plotted 
in Figures 5 and 6. As can be seen, the unpruned and 
pruned trees consist of respectively 15 and 3 linear re-
gression models (see Table 4). Unpruned model trees 
often have an excessive number of leaves which compli-
cate the analysis and may result in overlearning and re-
duced generalizability. In this condition, pruning the tree 
by merging some of the sub-trees simplifies the model, 
making it more generalizable, but may slightly reduce 
the prediction accuracy. Scatter diagrams of the meas-
ured compressive strength values and those predicted by 
the pruned and unpruned model trees are plotted in Fig-
ures 7 and 8, respectively.
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Figure 12: Structure of the unpruned M5P model tree; (a) Cluster 1, (b) Cluster 2

(a)

(b)

Figure 13: Comparison of measured and predicted values by 
unpruned FCM-M5P model for testing data.

3.2. Development of hybrid models

Generally, most studies in the field of data mining ap-
plied individual learning techniques with minor modifi-
cations to construct single models. However, hybrid 
models or combinations of two or more techniques have 
proven superior to many individual models (J.-S. Chou 
et al., 2014; Frosyniotis et al., 2003). The strategy 
adopted in this study is to combine unsupervised FCM 
and supervised learning methods including ANN, SVR, 
and M5P Tree in a parallel setup to achieve a new group 
of hybrid models. The block diagram of this hybrid mod-
el is shown in Figure 9. As can be seen, first, the dataset 
is classified by FCM algorithm into several clusters with 
similar characteristics, and then ANN, SVR, and M5P 
Tree are applied separately to each cluster. In view of the 
volume of data and after evaluating the performance of 
learning models with a different number of clusters, this 
number was set to 2. Data clustering was performed us-
ing the FCM toolbox in MATLAB. The train-and-test 
technique, which is one of the most common approaches 
to establishing learning algorithms for a given database, 
is also used to develop the hybrid models (Ghasemi et 
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Table 5: Statistical measures of developed models.

Models R2 MAPE RMSE
ANN 0.82 5.24 27.45
FCM-ANN 0.88 5.23 23.92
SVR 0.86 5.55 27.00
FCM-SVR 0.91 4.01 19.91

M5P
Pruned 0.91 5.22 26.14
Unpruned 0.92 5.32 26.15

FCM-M5P
Pruned 0.90 4.98 25.85
Unpruned 0.94 4.64 23.56

al., 2017). Accordingly, the dataset was divided into two 
clusters, the first consisting of 35 datasets (28 datasets 
assigned to the training set and 7 datasets assigned to the 
testing set), and the second cluster consisting of 24 data-
sets (19 datasets assigned to the training set and 5 data-
sets assigned to the testing set). It should be noted that the 
training and testing datasets used in this phase are similar 
to the training and testing datasets used during the devel-
opment of individual models.

3.2.1 FCM-ANN

Given the split of dataset into two clusters, the feed-
forward backpropagation ANN model was constructed 
for each cluster separately. The architecture of these net-
works is similar to that of individual ANN architecture 
consisting of one hidden layer composed of sigmoid 
neurons and a linear output layer. The number of neu-
rons considered for the model of both clusters was 8. 
The model constructed for each cluster was tested by the 
testing dataset of the same cluster. In Figure 10, the final 
results of the hybrid model are compared with the meas-
ured compressive strength values.

3.2.2. FCM-SVR

For each cluster, the intelligent SVR model was de-
veloped using the training dataset of that cluster. Each 
model was then evaluated using the testing dataset of the 
same cluster. The results obtained from these models are 
presented and compared in Figure 11.

3.2.3 FCM-M5P

For each cluster, the FCM-M5P hybrid model was de-
veloped in two modes, pruned and unpruned. First, the 
unpruned M5P tree (see Figure 12) was implemented 
for both first and second clusters with minNumInstances 
set to 4 and 6, respectively. The results of this model are 
presented in Figure 13. Then, the models were pruned 
for more simplicity. The model trees obtained in this step 
are shown in Figure 14. The results of evaluation of 
these models with the testing dataset are presented in 
Figure 15.

4. Analysis of results

Performance of the aforementioned models was eval-
uated based on the criteria described in section 2.6. The 
values of each statistical measure for the above models 
are presented in Table 5.

The results show that ANN models have a weaker 
performance than the other two. The SVR model outper-
forms the ANN model, not only in accuracy, but also in 
execution time and memory consumption. However, the 
best performance among the models has been achieved 

Figure 15: Comparison of measured and predicted values by 
pruned FCM-M5P model for testing data.

(a) (b)
Figure 14: Structure of the unpruned M5P model tree; (a) Cluster 1, (b) Cluster 2.
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by the M5P model trees. In these trees, pruning has 
slightly reduced the accuracy, but has also made a sig-
nificant reduction in tree size and the operation neces-
sary to predict the compressive strength. The most im-
portant advantage of the M5P model tree over the other 
two methods is the ability to create a simple tree struc-
ture with linear models in the leaves, which can explic-
itly describe the relationship between the input and out-
put parameters. In other intelligent data mining tech-
niques, completed once the model is constructed, the 
relative importance of its inputs need to be determined 
through a sensitivity analysis. However, in decision 
trees, the top-down structure of the tree also reveals the 
importance of the parameters, as the parameters placed 
at a higher position participate in the final prediction of 
a larger portion of the input instances. A comparison of 
hybrid models with their corresponding individual mod-
els shows the higher accuracy of hybrids. In general, it 
can be claimed that a phase of data clustering improves 
not only the prediction performance of these models, but 
also their generalizability, and thus their applicability to 
a wider range of projects.

5. Summary and conclusion

An accurate estimation of the compressive strength of 
shotcrete is important for construction and mining pro-
jects. In this study, we investigated the ability of various 
data mining techniques, including artificial neural net-
work, support vector regression and M5P tree to predict 
the 28-day compressive strength of shotcrete, as well as 
the effect of using a data clustering phase prior to data 
mining technique on the prediction accuracy. To achieve 
this purpose, the mentioned techniques were used indi-
vidually to develop a series of standalone prediction 
models. Then, these techniques were combined with 
FCM clustering to construct a series of hybrid models. 
The results of all models were compared with the out-
puts of the corresponding individual models. The com-
parisons showed that, among the tested individual mod-
els, the M5P model tree has the highest accuracy in pre-
dicting the compressive strength of shotcrete. Apart 
from the superior accuracy, the most important advan-
tage of this model over the other two is its ability to de-
rive the linear regression relations between input and 
output data. Analysis of the results also showed the bet-
ter prediction power of the SVR model as compared to 
the ANN model.

This study showed that the application of a data clus-
tering phase prior to soft computing techniques can sig-
nificantly improve the performance of models in antici-
pating the compressive strength of shotcrete. In general, 
the hybrid models managed to outperform the individual 
models. This superiority of hybrid models was particu-
larly significant in the case of FCM-ANN and FCM-
SVR in comparison with their individual counterparts. 
In addition to performance improvement, other benefits 

of data clustering phase as we described in this study 
include better generalizability and applicability to other 
projects.
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SAžetAk

Primjena metodologija mekoga računarstva u predviđanju 28-dnevne tlačne čvrstoće 
mlaznoga betona: komparativna usporedba individualnoga i hibridnoga modela

Mlazni beton popularna je konstrukcijska tehnika široke uporabe u rudarstvu i građevinarstvu. tlačna čvrstoća primar-
no je mehaničko svojstvo mlaznoga betona s posebnom važnošću za sigurnost projekta, ovisno o sastavu betona. U 
praksi ne postoji pouzdana i točna metoda za predviđanje toga svojstva. Ovdje su prikazani eksperimentalni podatci za 
59 različitih sastava mlaznoga betona, na kojima je razvijen niz metodologija temeljem mekoga računarstva, uključujući 
pojedinačnu umjetnu neuronsku mrežu, podržanu vektorskom regresijom, stablastim dijagramima, njihovim hibridima 
na temelju klastera vrijednosti c-sredina, a s ciljem predviđanja promjene tlačne čvrstoće mlaznoga betona tijekom 28 
dana. Općenito su klasteri podataka već prije uporabe strojnoga učenja znatno pomogli u kvaliteti, pouzdanosti i 
 općenitosti rezultata. Posebno je istaknut stablasti model M5P kao onaj koji izvrsno predviđa tlačnu čvrstoću mlaznoga 
betona.

Ključne riječi:
mlazni beton, tlačna čvrstoća, tehnike strojnoga učenja, hibridni model
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