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Abstract
The bootstrap method is a nonparametric statistical method that through the resampling of an input data set provides 
the ability to obtain a new data set that is normally distributed. Due to various factors, it is difficult to obtain many data 
sets for deep geological data, and in most cases, they are not normally distributed. Therefore, it is necessary to introduce 
a statistical tool that will enable obtaining a set with which statistical analyses can be done. The bootstrap method was 
applied to field “A”, reservoir “L” located in the western part of the Sava Depression. It was applied to the geological vari-
able of porosity on a set of 25 data points. The minimum number of resamplings required for a large sample to obtain a 
normal distribution is 1000. Interval estimation of porosity for reservoir “L” obtained by the bootstrap method is 0.1875 
to 0.2144 with a 95% confidence level.
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1. Introduction

Deep geological data are characterized by a relatively 
small set of data (<20), for which in most cases, input 
data for analysis is not normally distributed. The conse-
quence of the uneven distribution of input data is a rela-
tively small number of drilled wells in the analyzed area, 
lack of logging measurements, obtaining geological data 
from correlations with neighboring wells, etc. In the 
case of small oil and gas fields, very often due to com-
plex geological structures and pronounced tectonics, hy-
drocarbons are obtained from smaller hydrodynamic 
units, which results in a smaller input data set for the 
analysis of geological variables. In order to obtain the 
most reliable data on geological variables: porosity, per-
meability, fluid saturation, which are crucial in the geo-
logical development of the reservoir, it is necessary to 
apply a reliable static tool. The bootstrap method is a 
method that is applicable in the case of estimating the 
reliability of the intervals of individual geological vari-
ables. The bootstrap method has a wide application in 
various branches of science (Novoa and Mendez, 2009; 
Olatayo, 2013; Zhong et al., 2016; Bochniak et al., 
2019; Ablanedo-Rosas et al., 2020; Phan et al., 2021; 
Tewari et al., 2021). In geomathematics, and for the first 
time in the Croatian part of the Pannonian Basin System 
(CPBS), the bootstrap method was first applied by the 

authors Ivšinović et al. (2021) on the example of an oil 
and gas field in the Sava Depression. The authors ana-
lyzed the porosity and the cost of injection of formation 
water in the reservoir “K” for a small input data set.

In this paper, a set of input data for the geological vari-
able of porosity (25 data) in the field “A”, reservoir “L”, 
which is located in the western part of the Sava Depres-
sion, is analyzed. The number of resamplings will be de-
termined until the normality of the distribution for the in-
put data set is obtained. The normal distribution will be 
tested with statistical tests of Anderson-Darling (AD) and 
Kolmogorov-Smirnov (K-S) after each specified number 
of resamplings. After determining the number of resam-
plings (obtaining a normal distribution of data), the inter-
val value of the porosity of reservoir “L” will be estimated.

2. Methods

The materials and methods of this paper describe the 
geological setup of the investigated area, the mathemati-
cal settings of the bootstrap method, and testing the ex-
istence of a normal distribution of the data set. These 
analyses are needed to see the purpose and application of 
the bootstrap method on a large sample of data whose 
data are not normally distributed.

2.1. Geological settings of the investigated area

The investigated field “A” is located in the western 
part of the Sava Depression within the Croatian part of 
the Pannonian Basin System (CPBS). The area of the 
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western part of the Sava Depression is 8000 km2 (Malvić 
et al., 2020a), and in the western part of the Sava De-
pression are the oldest and largest number of oil fields in 
the entire CPBS. The position of the Sava Depression 
and field “A” within the CPBS is shown in Figure 1.

Their total thickness in the deepest part of the Sava 
Depression reaches up to 800 meters, while it is 100-200 
meters in the margins of the depression (Vrbanac et al., 

2010). Neogene turbidites with lacustrine pelitic sedi-
mentation formed thick heterogeneous sequences of 
sandstones and marls (totalling several hundreds to some 
thousands of metres in thickness in different depression-
al parts) of Upper Miocene age in northern Croatia 
(Malvić, 2016). The source of the turbidite material of 
today’s deposits in the Sava Depression is the Eastern 
Alps (Malvić, 2012). Hydrocarbon reservoirs have been 
confirmed in all formations, except in the youngest Lon-
ja Formation (see Figure 2). Most hydrocarbons were 
produced from the Upper Pannonian and Lower Pontian 
reservoirs in the Sava Depression.

In the research structure, hydrocarbon reservoirs were 
discovered in the Upper Miocene sandstones from which 
they are still obtained by the secondary method of hy-
drocarbon production. The porosity of the “L” reservoir 
in oil field “A” was analyzed in the paper (see Figure 2). 
Porosity data were obtained by a combination of labora-
tory core measurements and interpretation of logging 
measurements.

2.2.  Mathematical settings of the bootstrap 
method

The bootstrap method is a nonparametric statistical 
method that provides an interval estimate of the value of 
the analyzed variable by the method of random repeated 
causation of the input data set. A small input set of val-
ues is considered a data set <20 (Malvić et al., 2019a; 
Ivšinović and Malvić, 2020). A sufficient number of re-
sampling of the input set of data is an ideal statistical 
tool for obtaining a normal distribution of the analyzed 
variable (provided that the variable by its nature exhibits 
such a property). Ensuring a normal distribution, then it 
is possible to make reliable basic statistical calculations 
of interval estimation, expectations and variance, and 
parametric statistical tests. The procedure for calculating 
the bootstrap method is shown in Figure 3.

Figure 1: Position of the Sava Depression within the CPBS and the analyzed area (green).  
(from Malvić et al., 2020b)

Figure 2: Geological column of field “A”.  
(modified from Ivšinović et al., 2020)
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There are several types of bootstrap methods, and they 
are: Bayesian bootstrap, smooth bootstrap, parametric 
bootstrap, wild bootstrap, etc. In this paper, the smooth 
bootstrap method is applied, this method is applicable for 
the analysis of geological variables (Ivšinović et al., 
2021). In the smooth bootstrap method, the input set does 
not change its size. Resampling randomly replaces data in 
a new set from the input data set. The mean value of the 
new data set is calculated (the same number of data re-
mains as the original) which will be an integral part of the 
bootstrap data set. The number of realizations depends on 
the nature of the input data set.

The mean value of the resampling input data set and 
the bootstrap sample is calculated according to the math-
ematical equations described in the paper by Ivšinović 
et al., 2021. After calculating the mean value of the 
bootstrap sample, the standard deviation of the same 
sample is calculated (Novoa and Mendez, 2009; Pajo, 
2013):

  (1)

Where:
Sm – standard deviation of bootstrap,

 – arithmetic bootstrap mean,
 – mean sample value after resampling,

m – number of the resampling data set.
By calculating the required bootstrap statistics (mean 

values and standard deviations) for the newly created 
bootstrap sample, an interval estimate of expectations is 
calculated (Ivšinović et al., 2021):

  (2)

Where:
Sm – standard deviation of bootstrap,

 – arithmetic bootstrap mean,
z – value from the normal distribution,
m – number of the resampling data set.

The usual set reliability of the estimate of the interval 
is 95% (Dogan, 2017). The steps are repeated as many 
times as necessary for the input data set that is not nor-
mally distributed in the new bootstrap sample to become 
normally distributed.

2.3. Mathematical settings of data normality tests

In order to determine the moment of obtaining the 
normal distribution, it is necessary to test the data sets 
obtained by the bootstrap method on the normality of the 
data. For the control and analysis of data, the following 
tests were applied for the existence of a normal distribu-
tion: Anderson-Darling (A-D) test and Kolmogorov-
Smirnov (K-S) test.

2.3.1. Anderson-Darling (A-D) test

The Anderson-Darling (A-D) normality test is applied 
when checking the distribution of different data sets. 
A-D test values are calculated from the following equa-
tion (Yap and Sim, 2011; Heo et al., 2013; Jäntschi 
and Bolboacă, 2018):

  (3)

Where:
AD – value of the Anderson-Darling test,
N – sample size,
p – probability.
The correction factor for the A-D normality test 

(AD*) for a small sample is obtained from the expres-
sion (Yap and Sim, 2011; Jäntschi and Bolboacă, 
2018):

  (4)

Where:
AD* – correction value of the Anderson-Darling test,
AD – value of the Anderson-Darling test,
p – probability.
The correction value of the A-D test for the large sam-

ple is negligible. The minimum number of test data sets 
is 20. The minimum “p-value” for checking the A-D test 
is 0.10.

2.3.2. The Kolmogorov-Smirnov (K-S)

The Kolmogorov-Smirnov (K-S) test is the most ap-
plicable statistical test for proving the normal distribu-
tion of nonparametric input data. The expression for the 
value of the K-S test is (Lopes et al. 2007; Hasani and 
Silva 2015; Luiz and de Lima 2021):

  (5)
Where:

DKS – value of the Kolmogorov-Smirnov test,
sup – supremum set of distances,

Figure 3: Bootstrap sample calculation procedures.  
(Dogan, 2017)
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F(x) – empirical distribution function,
P(x) –  cumulative function of the theoretical distribu-

tion of the K-S test.
In the case of a distribution normality test, the sam-

ples are standardized and compared with the standard 
normal distribution. The advantages of the method are 
ease of application and allows the calculation of descrip-
tive statistics for variables, which are not possible with-
out the application of this method. The disadvantages of 
the method are, in the case of non-representativeness of 
the sample, a large expenditure of time on processing the 
data themselves without specific results.

3. Results and discussion

The data used in this paper are taken from a paper by 
Malvić et al., 2019b. The analyzed variable is the poros-
ity of the reservoir “L” of the field “A”. The number of 
analyzed porosity data set values is 25, which is a large 
data set. The input data set needs to be tested for distri-

Table 1: Basic statistical data on porosity (parts of unit) reservoir “L”

Porosity
n K-S A-D Normal distribution Min Max s
25 Ne 0.02 No 0.145 0.239 0.202 0.026

Table 2: Normality test results for datasets after applying  
the bootstrap method

Porosity

m K-S A-D Normal distribution
25 No 0.02 No
500 No 0.03 No
1000 No 0.04 No
1050 N/A 0.05 No
1100 N/A 0.2 Yes
1250 N/A 0.64 Yes

Table 3: Interval estimation porosity of reservoir “L”

Porosity

m Confidence interval (95%)
25 -
500 -
1000 -
1050 -
1100 <0.1875, 0.2144>
1250 <0.1877, 0.2144>

Figure 4: Histograms of porosity (reservoir “L”) obtained by the bootstrap method
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bution normality, in case of test negativity, it is neces-
sary to approach the application of the bootstrap method 
to obtain the distribution normality. The usual number of 
resamplings when applying the bootstrap method is 500, 
1000 and 2000 (Carpenter and Bithell 2000; Grunke-
meier and Wu 2004). The input data on the porosity of 
the “L” reservoir are shown in Table 1.

The number of repeated resamplings applied in this pa-
per is: 500, 1000, 1050, 1100 and 1250. The test results of 
the normal data distribution are shown in Table 2.

How can it be applied from Table 2 since the statisti-
cal K-S test is not applicable when testing numbers 
greater than 1000 because no test value is obtained (test 
limitation of macro in Microsoft Excel)? When testing 
500, 1000 and 1050, an increase in the A-D test and ap-
proaching the 0.10 limit for test acceptance is observed. 
After that, the value of 1250 was tested and the value of 
A-D increased to 0.64, which is an indication of the ex-
istence of normal distribution. An additional 1100 resa-
mplings were tested and the test value of the A-D test 
was 0.20. The normality of the input data distribution for 
the porosity of the “L” reservoir is between 1050 and 
1100 of resamplings. The calculated interval estimate of 
the “L” reservoir porosity expectation for resampling 
cases of 1100 and 1250 is shown in Table 3.

According to the estimate of the confidence interval 
of the porosity of the reservoir “L”, it is visible that the 
difference on the fourth decimal place between the lower 
value of porosity for the realizations 1100 and 1250. The 
negligible difference between the values of the estimat-
ed intervals for 1100 and 1250 leads to the conclusion 
that it is not necessary to do an estimate for 2000 resam-
plings. A graphical representation of the results of the 
bootstrap method is shown in Figure 4.

Figure 4 shows the change in the histogram accord-
ing to the appearance of the normal distribution curve 
(the red line). The number of classes in the case of 500 
realizations is 22 (width of 0.001818 part of units), and 
in the case of 1000, 1050, 1100, 1250 realizations made, 
it is 32 (width of 0.00125 part of units). The difference 
between the realized realizations 1050 and 1100 is very 
clearly seen when there is a change in the normality of 
the data obtained by the bootstrap method. This can be 
seen from Figure 4 how the blue columns less exceed 
the normal distribution boundary (red line) in cases 1100 
and 1250 in which most of the blue columns are near or 
below the red curve. This was confirmed by the A-D test, 
with which the normality of data distribution is obtained 
after 1100 realized realizations.

4. Conclusions

The minimum amount of resamplings for a large sam-
ple on the example of the porosity of reservoir “L” is 
1100. The normality of the input data was obtained be-
tween 1050 and 1100 realizations.

When testing the normal distribution of a large sam-
ple obtained by the bootstrap method, it is recommended 
to use the Anderson-Darling (A-D) statistical test, be-
cause the Kolmogorov-Smirnov (K-S) statistical test is 
not applicable to a sample larger than 1000.

Interval estimation of porosity (reservoir “L”) ob-
tained by the bootstrap method is 18.75% to 21.44% 
with a 95% confidence level.

The bootstrap method is applicable to a large sample, 
which is visible from the results of the porosity of the 
“L” reservoir and is therefore applicable to the entire 
area of the Sava Depression with similar geological 
characteristics as the “L” reservoir. It is used to deter-
mine the primary value of reservoir porosity and is ap-
plicable to Kloštar-Ivanić Formation reservoirs.
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SAžeTAK

Primjena samonadopunjujuće metode na velikome skupu ulaznih podataka  
– primjena na zapadnome dijelu Savske depresije

Samonadopunjujuća metoda neparametarska je statistička metoda koja omogućuje ponovnim uzorkovanjem ulazni 
skup podataka za dobivanje novoga skupa podataka koji je normalno distribuiran. Zbog različitih čimbenika teško je doći 
do geoloških podataka u velikome skupu, a u većini slučajeva nisu normalno distribuirani. Stoga je potrebno uvesti sta-
tistički alat koji će omogućiti dobivanje skupa s kojim se mogu raditi statističke analize. Samonadopunjujuća metoda 
primijenjena je na polju „A”, ležište „L” koje se nalazi u zapadnome dijelu Savske depresije. Primijenjena je na geološku 
varijablu šupljikavosti na skupu od 25 podataka. Minimalni broj ponovnoga uzorkovanja potreban za veliki uzorak da bi 
se dobila normalna raspodjela iznosi 1000. Intervalna procjena šupljikavosti za ležište „L” dobivena samonadopunjuju-
ćom metodom iznosi 0,1875 do 0,2144 s razinom pouzdanosti od 95 %.

Ključne riječi:
samonadopunjavanje, šupljikavost, veliki skup podataka, testovi za postojanje normalne razdiobe, Savska depresija
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