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Abstract
The rising demand for scandium led to massive exploration activities for its discovery from mining by-products. There-
fore, this study attempts to delineate the distribution of scandium-bearing minerals in the surrounding bauxite mining 
area, Tayan District, West Kalimantan Province, Indonesia. Preliminary studies were conducted by applying optical sen-
sors to discriminate the types of minerals, such as kaolinite, gibbsite, goethite, and quartz. The spectral information aids 
the reconnaissance study by providing data on specific rocks and minerals using the short-wave infrared (SWIR), pro-
cessed into a series of bands with spectral ranges from 0.35 to 2.5 μm. The data was then compared with the structural 
lineament from the ALOS PALSAR imagery to infer the prospective area with the structural pattern. The integrated band 
math minerals and geochemical data taken from X-ray fluorescence and Inductively Coupled Plasma-Mass Spectrometry 
suggest that the Sc-bearing minerals were disseminated predominantly on the bauxite laterite profile from pyroxene di-
orite and diorite parent rock weathering. The spectral range for goethite as the Sc-bearing minerals is from 0.43 to 1.03, 
with the main absorption features from 2.0 to. 2.4 . Furthermore, goethite is mainly concentrated at the top bauxite ho-
rizon associated with the structurally related hill. The ore-bearing minerals also occupied the tailing pond and some 
beneficiation areas in relatively minor proportion. This study is undoubtedly valuable for the practical need to support 
mineral exploration through remote predictive mapping.
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1. Introduction

The global demand for critical metals is significantly 
driven by technological innovation and the transition 
from fossil fuel to the zero-emission renewable energy 
system, such as electric vehicles, which requires a high-
capacity storage system. One of the major forces in ad-
dressing the capacity challenges while considering the 
environment’s safety and sustainability is the immediate 
recovery of critical metals. Scandium (Sc) metal is con-
sidered a critical substance due to its supply disruption. 

Therefore, it is imperative to conduct an exploratory 
study from by-product leach solutions in either nickel or 
bauxite refineries to determine the sediment residues in 
the beneficiation plant and vertical bauxite weathering 
profile. The idea of investigating the scandium-bearing 
minerals from bauxite mining operations is based on the 
ongoing feasibility studies in the Ural Mountains in Rus-
sia, which developed scandium recovery from the by-
product of alumina refining (USGS, 2019).

The mineral exploration for Sc-bearing minerals in 
bauxite mining sites occupies large areas, combined 
with the limited cost of setting up geological field map-
ping. Remote sensing techniques are new approaches 
used to provide geological information, which aims to 
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delineate potential areas of the ore-bearing scandium in 
bauxite mining sites. The method is validated with geo-
logical field mapping, domaining of geochemical data, 
and ore-exploration to exemplify the potential area. A 
combination of field mapping and multispectral images 
can provide reliable results for the mineral mapping and 
further be proposed as the prospective area for scandium 
extraction.

Satellite images record vast geological and environ-
mental features from various map scales. In examining 
regoliths, the visible to short wave infrared (SWIR) can 
map iron-rich minerals, clay, and associated residual 
bauxite occurrences (Moghtaderi et al., 2017). Miner-
als and rocks exhibit different spectral patterns due to 
distinct spectral absorption features (Asadzadeh and de 
Souza Filho, 2016). Preliminary studies applied multi-
spectral imaging to measure the spectrum of light in 
each pixel (Bruno et al., 2021; Calvini et al., 2019)
Landsat-8 OLI is used as a sensor consisting of eight 
channels or bands and broad spatial resolution (Guer-
rero and Aleu, 2020). Landsat imagery is powerful for 
gaining an overview of the environmental condition in 
large-scale mining (Paull et al., 2006). The spatial reso-
lution of the light in each pixel is broken down into sev-
eral different spectral bands to provide more information 
to the representative image. The greyscale or colour im-
ages can differentiate vegetation, water, soil, and various 
types of rock. More importantly, the processing image is 
primarily used to identify the target of ore-bearing scan-
dium and associated minerals in bauxite ore. It is im-
perative to determine the iron minerals and mineral as-
semblages in bauxite for mineral exploration because it 
is gaining more attention since the method simply ap-
plies satellite technology. The technique is promising, 
inexpensive, and a quick tool for the initial assessment 
of surface to shallow surface conditions. However, no 
studies considered applying remote sensing to investi-

gate and map the distribution of ore-bearing scandium in 
bauxite laterite.

According to literature studies, presently, there is no 
approach to map the scandium-bearing mineral, using 
satellite imageries for bauxite exploration. However, uti-
lizing Landsat ETM+ imageries to investigate the rela-
tionship between bauxite indices and environmental fac-
tors (such as vegetation stress) has been performed in the 
Foumban area, Cameroon, and Nigeria (Tematio et al., 
2015). The approach emphasizes the use of supervised 
classification and band ratio on Landsat ETM+ image-
ries to map the distribution of encrusted bauxitic sur-
faces. The study revealed the two categories of encrusted 
bauxitic surfaces, with thickness controlled by vegeta-
tion stress. A different approach has been performed to 
map bauxite alteration zone in Kolli Hills, Tamil Nadu, 
India, that utilised spatial and spectral information of 
VNIR and SWIR regions of ASTER data (Lakshmi and 
Tiwari, 2018). The method used in the study is called 
spectral unmixing by correlating the Normalized Differ-
ence Vegetation Index (NDVI) with alumina and vegeta-
tion fraction images and the structural density over 
DEM. NDVI is used to measure vegetation density as 
captured in satellite images. Their map depicted the low-
er alumina content as shown by a cyan and black colour, 
and the higher value of alumina content is notified by 
yellow.

1.1 Local Geological Setting

The local geological setting of the study area consists 
of five (5) lithological units, namely diorite, quartz dior-
ite, granodiorite, pyroxene diorite, and alluvial deposits 
performed from field mapping (see Figure 1). The igne-
ous rock units are mainly occupying the gentle hilly to-
pography. In addition, the lithology is mainly identified 
as the poorly exposed rocks in the field due to intense 

Figure 1: Local lithological 
units of the study area based 
on field mapping
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weathering. Hence, it is an opportunity to optimise re-
mote sensing utilization to complement this barrier.

The collected hand specimen samples were identified 
to determine the rock name. The igneous rocks exhibit 
equigranular, holocrystalline, medium-grained, and al-
lotriomorphic to hypidiomorphic-granular. Megascopic 
examination for diorite indicates grey (fresh) to brown-
ish grey (weathered) colour, with crystal size ranging 
from 2 to 4 mm. It has subhedral to anhedral textures and 
comprises predominantly plagioclase (40%-45%), inde-
terminate groundmass (38%-42%) with accessory min-
erals of hornblende (10%), subordinate biotite (5%), 
minor chalcopyrite as an altered mineral (1%) and 
opaque mineral (2%). Quartz diorite is like diorite with 
a sub-porphyritic and subhedral texture but contains 
quartz as an accessory mineral. Granodiorite exhibits a 
greater crystal size of 2 – 5 mm, it is hypidiomorphic-
granular, and mineralogically consists of plagioclase 
(35%-40%), quartz (20%-25%), orthoclase (8%-10%), 
hornblende (8%-10%), biotite (5%) and groundmass 
(15%-18%). Pyroxene diorite is blackish grey, holocrys-
talline, has a crystal size of 1 to 4 mm, sub-porphyritic 
texture, composed of predominant plagioclase (30-
35%), pyroxene (15%-18%) as an accessory mineral, 
with subordinate hornblende (5%-6%), occasional quartz 
(1%) and groundmass (42%-45%) as mineral constitu-
ents. The youngest alluvial deposit is brownish grey, 
contains granule to clayey-sized sediments, covers the 
older weathered rock, and mainly occupies the valley 
and lowland topography.

Various igneous rocks bodies indicate multiple intru-
sions occurred during the early Cretaceous period. In the 
later period, the area was subjected to a regional defor-

mation and uplifting that led to the topography’s dissec-
tion and laterite formation in gentle hills. The five litho-
logical units in the study area (see Figure 1) belong to 
the Sepauk Tonalite Formation predominated by tonalite 
and granodiorite (see Figure 2) with subordinate mon-
zogranite, quartz diorite, diorite, gabbro, quartz monzo-
nite, and aplite. The Sepauk Tonalite Formation equals 
the Mensibau granodiorite, while the age determination 
was based on the K-Ar isotope analysis. The magmatism 
experienced complexity from the different petrogenetic 
stages during the early Cretaceous, such as periodic 
magma recharge and mixing with irregular boundaries 
(Pieters, 1993). The peripheral intrusion locally shows 
foliation, lineation, and recrystallization.

Information on the nature and age of the lithology or 
rock units must be considered when utilizing optical im-
agery for structural, lithological, and surficial mapping 
(Harris et al., 2011). The uplifting period in the late 
Cretaceous denotes that the rocks have been exposed 
and subjected to intensive weathering. Investigation and 
data collection on the fresh and weathered products in 
the vast areas will be time-consuming without remote 
sensing. Progressive weathering is generally associated 
with the formation of hydroxyl-bearing clays of illite, 
montmorillonite, and kaolinite due to hydrological 
leaching (Heimsath et al., 2012). The added value of 
utilizing the satellite image is the ability to diagnose the 
weathering (mineralogical change) by discriminating 
clays, quartz, and other secondary minerals. In addition, 
the broad spatial resolution of satellite images exhibits 
an extensive investigation of some external variables 
that contribute to the composition and architecture of the 
regolith, such as parent rocks, tectonics, landforms, and 
vegetation cover.

Figure 2: Regional geological map of the Tayan area, West Kalimantan Province, Indonesia (modified from Pieters, 1993)
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1.2 Spectral Properties for Minerals

Optical remote sensing with a moderate resolution of 
sensors is used to discriminate the rock and mineral 
types. The captured image in optical remote sensing is 
based on the reflected solar energy. The selected interval 
covers specific electromagnetic spectrum wavelengths, 
indicating that solar energy interacts differently with the 
atmosphere and the Earth’s surface. The spectral range 
of electromagnetic radiation is within 0.45 – 0.69 μm, 
0.76 – 0.90 μm, and 1.55 – 2.35 μm for bands 1 – 3, 4, 
and 5 – 7, also known as RGB, Near Infrared-NIR, and 
Short-wave infrared – SWIR, respectively (Harris et 
al., 2011). The visible and near-infrared are referred to 
as VNIR, with optical sensors characterized by a series 
of bands or channels. The spectral range can be used to 
evaluate mineralogical and lithological mapping since 
they exhibit different spectral patterns due to distinct 
spectral absorption features. Each mineral exhibits vari-
ous electromagnetic spectral wavelengths concerning 
VNIR and SWIR response. As VNIR and SWIR have 
specific spectral ranges, the accuracy of the spectral 
range for mineral assemblage in bauxite is shown in Ta-
ble 1. The accuracy denotes the response quality of 
VNIR and SWIR to diagnose each mineral. The response 

is clearly shown from the distinct spectral features of 
minerals at a particular wavelength. Overall, accuracy is 
critical before determining the composite band math.

The optical sensors also respond to the surface char-
acteristics of the weathered residue; hence, the spectral 
signatures can be used to distinguish iron and clay 
weathering products. The iron oxides and hydroxides 
found in bauxite laterite include limonite and goethite. 
The iron minerals comprise distinct spectral absorption 
values in VNIR, ranging from 0.4 to 1.1 μm (Peygham-
bari and Zhang, 2021). Iron minerals containing Fe2+ 
and Fe3+ cations have an absorption peak of 1.03 (SWIR 
- band 5) and 0.64 μm (VNIR – band 4), respectively 
(Peyghambari and Zhang, 2021). Therefore, mapping 
Sc-bearing minerals in bauxite laterite employed the 
VNIR-SWIR region for alteration mineral mapping of 
Fe-OH and Al-OH minerals. In contrast, hydroxyl-bear-
ing minerals, such as muscovite and clay minerals, have 
distinct spectral absorption in the SWIR region (mainly 
band 7), as shown in Figure 3. The reference spectral of 
minerals refers to the USGS spectral library of minerals 
and rocks from 0.35 to 2.5 μm regions (band 1 – 7) 
measured using lab, field, and imaging spectrometers 
(Kokaly et al., 2017).

Table 1: The accuracy of spectral analyses for each mineral in VNIR or SWIR (Coulter, 2017)

Type Silicate Structure Mineral Group Mineral Name VNIR Response SWIR Response

Silicates

Sorosilicates Epidote Epidote Non-diagnostic Good
Phyllosilicates Mica Muscovite Non-diagnostic Good

Chlorite Clinochlore Non-diagnostic Good

Clay minerals
Illite Non-diagnostic Good
Kaolinite Non-diagnostic Good

Tectosilicates Silica Quartz Non-diagnostic Non-diagnostic

Non-silicates
Hydroxides Gibbsite Non-diagnostic Good
Oxides Hematite Hematite Good Non-diagnostic

Figure 3: Spectral features of different mineral assemblages 
in bauxite that possible host the Sc metal, including  
(a) clay minerals and (b) iron oxides (modified from  

Clark et al., 1993)

2. Materials and Methods

2.1. Materials

In remote sensing, the data types utilise different 
spectral signals, including optical, synthetic aperture ra-
dar (SAR), microwave, LIDAR, and sonar data. The col-
lective data used in this study consists of the optical sen-
sors from Landsat and radar sensors from ALOS PAL-
SAR. The Landsat data has a multispectral resolution to 
determine certain rock types and specific mineral com-
positions, such as iron and clay minerals. The spectral 
signals are produced from scattered and reflected sun-
light. The images of Landsat-8 OLI (Operational Land 
Imager) used in this study were acquired from GloVis - 
USGS’s Earth Explorer website (https://glovis.usgs.gov/
app). The images covered the mining areas in Tayan 
 District, Sanggau, West Kalimantan. They record the 
landscape on the earth’s surface, including the outcrops, 
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tailing pond, and nearby morphological features. The 
Landsat image metadata shows an acquisition date on 
September 17th, 2019.

The radar sensor of ALOS (Advanced Land Observ-
ing Satellite) was also used to complement the shortage 
of cloud cover conditions, as seen in the optical sensor 
from the Landsat image. ALOS is equipped with the 
PALSAR sensor (Phased Array type L-band Synthetic 
Aperture Radar). The available SAR images in the stud-
ied area comprise the ALOS PALSAR Level 1.1 Com-
plex, which was acquired from http://asf.alaska.edu. Ac-
cording to the image metadata, the acquisition date is 
August 10th, 2009, at 15:29:24Z. The advantage of using 
the SAR sensors is their four different polarization 
modes which allow for better image classification and 
target discrimination (Mc Nairn and Brisco, 2004)and 
thus remote sensing is an attractive approach to mapping 
and monitoring applications. Research performed with 
synthetic aperture radar (SAR. The polarization modes 
include HH – horizontal transmit and receive, HV – hor-
izontal transmit and vertical receive, VH – vertical trans-
mit and horizontal receive, and VV – vertical transmit 
and receive.

A total of 700 samples have been collected in the field 
and analysed using various analytical approaches in the 
laboratory. The samples include lateritic soils, crude and 
washed bauxites, clays, sediment residue, and red mud. 
They were taken from the exposed rocks, channel sam-
pling in the pit, bauxite sediment residue from the ben-
eficiation plant, and red mud from the tailing pond.

2.2. Methods

2.2.1. Pre-processing

Pre-processing stages for the satellite image have 
been performed for both Landsat and ALOS PALSAR. 
Optical imagery can be enhanced in many ways, such as 
by combining geoscience datasets and visually repro-
ducing them in a GIS environment. Image processing 
using a computer helps undertake more quantitative 
analyses of the imagery for mineral mapping. This study 
used a multispectral sensor of Landsat-8 OLI to differ-
entiate the ore-bearing minerals. Landsat imagery has 
been widely used in mining areas, including hydrother-
mal alteration, laterite, and residual deposits, because 
the sensors consist of 3 to 10 wider bands (Behnia et al., 
2012). Some corrections and normalizations for the at-
mospheric effects were carried out in the initial image 
processing to gain an accurate surface condition and in-
crease the clarity and acuity of the image. The initial 
processing method for Landsat OLI is radiometric cor-
rection, comprising radiometric calibration and atmos-
pheric correction. The atmospheric effects appear due to 
dust, mist, aerosol scattering, and absorption of solar 
radiation capable of interfering with the reflectance of 
the detector (Peyghambari and Zhang, 2021). The at-
mospheric correction is performed using the FLAASH 

or Fast Line of Sight Atmospheric Analysis of Spectral 
Hypercubes. It starts by converting the digital number of 
images into radiance or applying the planetary reflec-
tance approach from the top of atmosphere (TOA). This 
stage was applied to minimize distortions of an image 
due to the sensor shortage, which quantitatively inter-
prets the data. Furthermore, the types of minerals were 
discriminated to process the composite band by analyz-
ing the spectral cure of each mineral based on the USGS 
spectral library.

Data for the geological structures were obtained from 
SAR that primarily uses the advanced land observing sat-
ellite (ALOS PALSAR) type L-band SAR. Radiometric 
calibration was applied for the imaging process to in-
crease the relative brightness and represent the surface 
reflection of the backscatter radar. The multi-looking 
stage was performed to improve the radiometric resolu-
tion, reduce the noise, and disentangle the image focus 
through speckle filtering. The image was then deskewed 
to return the data into the Doppler geometry, while terrain 
correction was finally used to rectify the geometric distor-
tion. Image processing was performed using SNAP soft-
ware for structural geological mapping, while the map 
layouts were mainly conducted using ArcMap and QGIS. 
The computed analysis was adopted from the studies con-
ducted by Harris et al. (2011), Leverington and Moon 
(2012), Tulcanaza and Meyer (2022), and Paull et al. 
(2006) concerning the investigation of mineral and min-
ing exploration. The lineament of the structural features 
can be identified by employing the principles of visual 
interpretation, such as shape and pattern. The structural 
information was mainly extracted from the exposed rocks 
or laterite products from the older and more complexly 
deformed igneous rocks. The ability to penetrate deeply 
into the subsurface makes SAR capable of detecting the 
buried target based on the physical soil properties (Ghi-
yats Sabrian et al., 2017). Additionally, SAR can dimin-
ish the effect of atmospheric and vegetation cover that 
commonly obscures the structural information (Do-
brynchenko et al., 2018; Yonezawa et al., 2012).

2.2.2. Band math mineral processing

This study used the SWIR spectral analyses to detect 
distinct mineral assemblages. Mineral mapping was cre-
ated from the determination of surface composition. The 
absorption feature position from the multispectral satel-
lite image was used to determine the various mineral 
chemistry, such as Al-Fe, in the forms of oxide and hy-
droxide. Most of the neomorphosed minerals (such as 
goethite, kaolinite) in bauxite laterite have distinct spec-
tral features in VNIR-SWIR region.

The composite band math processes the raw images 
into the diagnosed minerals. The primary purpose of the 
composite band is to create the RGB colour from various 
bands, calculate the combination using different equa-
tions, select the appropriate colour composition accord-
ing to the desired target, and make a new layer stacking 
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for raster data from numerous acquisitions time. One of 
the composite band math methods is utilizing the band 
math ratios, which differentates types of minerals by de-
termining the digital number of each band pixel. Clark 
et al. (1993) determined a set of reference spectra in the 
USGS spectral library. The bands from the spectral li-
brary data of around 0.43 to 1.03 m, with important fer-
ric iron detection in detachable bands 1 and 5 (El-Mi-
mouni et al., 2020; Hewson, 2020). The spectral library 
was then used to discriminate mineral assemblages in 
bauxite, while the reflective spectral data characteristics 
used for Landsat 8 OLI in this study refers to Rockwell 
et al. (2021), as shown in Table 2.

  (6)

  (7)

  (8)

  (9)

The simple band math rationing results are displayed 
as the band math value from low to high. The band math 
value represents the relative abundance of minerals.

2.2.3. Mineral and geochemical analyses

The mineral analyses have been performed using con-
ventional petrography and mineragraphy. Petrography 
examines the physical texture, structure, and mineral as-
semblages of the parent rocks and bauxites. Meanwhile, 
mineragraphy is primarily used to determine the assem-
blage of metal minerals, such as goethite, gibbsite, he-
matite, and hydrothermally altered pyrite mineral.

The geochemical data were collected from the explo-
ration area, particularly from test pit locations. The geo-
chemical analysis consists of X-ray fluorescence (XRF) 
and inductively coupled plasma-mass spectrometry 
(ICP-MS). X-ray fluorescence spectroscopy measures 
the concentration of Al2O3, Fe2O3, and TSiO2 major ele-
ments. This analysis validates the accurate distribution 
of mineral composition in the studied area. The mineral 
map based on geochemical studies overlapped with the 
raster image from band math processing. Detailed scan-
dium identification was performed using inductively 
coupled plasma-mass spectrometry (ICP-MS), with cer-
tain calibrators and quality control materials of OREAS 
as certified reference materials. The ICP-MS analysis 
includes 66 samples of lateritic soils, crude and washed 
bauxites, clays, sediment residue, and red mud.

2.2.4. Spatial Elemental Distribution Maps

The geochemical data were plotted as grades of the el-
emental map to infer the actual mineral distribution. The 
plotted major elements are Al2O3, Fe2O3, RSiO2, and 
TSiO2. Al2O3 is the major element that mainly constitutes 
gibbsite. Fe2O3 represents goethite as an iron-bearing min-
eral. RSiO2 is reactive silica used to determine the SiO2 
derived from kaolinite clay minerals, while TSiO2 is total 
silica that mainly constitutes quartz minerals.

The plots of geochemical data were carried out using 
the inverse distance weighted (IDW) method to estimate 
the ore grades at adjacent target locations. Inverse dis-
tance weighted (IDW) is known as one of the most com-
mon and simple geostatistical interpolation techniques 

Table 2: Characteristics of reflective spectral data  
for Landsat 8 OLI (Rockwell et al., 2021)

Band Wavelength 
Range (μm)

Band 
Center (μm) Wavelength Region

1 0.43-0.45 0.44 Ultra+blue, coastal 
aerosol

2 0.45-0.51 0.48 Blue
3 0.53-0.59 0.56 Green
4 0.64-0.67 0.655 Red
5 0.85-0.88 0.865 Near Infrared (NIR)

6 1.57-1.65 1.61 Short-wave infrared 
(SWIR 1)

7 2.11-2.29 2.2 Short-wave infrared 
(SWIR 2)

Image processing of band math rationing was per-
formed using ENVI 5.3 for mineral discrimination. In 
determining the composite band math, the ratios of min-
eral indices found in bauxite use a simple band ratio al-
gorithm (Drury, 1987), wavelength range from Rock-
well et al. (2021), with some adjustments based on the 
spectral features from the spectral library. For clay min-
eral and iron-bearing minerals, the band ratio as follow 
(Drury, 1987):

  (4)

Where:
SWIR1 – band 6,
SWIR2 – band 7.
The band ratio for ferrous minerals highlights iron-

bearing minerals (including goethite) as follows:

  (5)

Where:
SWIR1 – band 6,
NIR – band 5.
The ratio algorithms above were modified according 

to the absorption spectral features on USGS spectral li-
brary, as seen in equations 6-9:
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(Jing and Wu, 2013; Kayıkçı and Kazancı, 2016). The 
image and spatial data interpolations are essential to pre-
dict the target parameters in the field and develop the 
spatial distribution of certain ore-bearing minerals. This 
study uses the IDW method to interpolate the spatial dis-
tribution of gibbsite, goethite, kaolinite, and quartz min-
erals based on the grades of each prevalent major ele-
ments. In the IDW method, the grade values of the un-
sampled points are explicitly assumed to be more like 
the values of closer sampled points.

The principal method of IDW applies a linear-weight-
ed combination set of sample points to determine grade 
value at the target location. The grade value at the target 
location will be assigned from the closest greater weight 
points. The equation is explained as follows (Yang et 
al., 2020)960 water samples were collected monthly 
along the Xin’anjiang River from 2008 to 2017. Twenty-
four water quality indicators, according to the environ-
mental quality standards for surface water (GB 3838-
2002:

  (10)

Where Z(So) is the unknown value at the target loca-
tion of point So, n is the monitoring station, Z(Si) is the 
value at sampling location Si, and Wi represents the 
weight or Si grade value. The weight is defined using the 
following equation (Yang et al., 2020)960 water sam-
ples were collected monthly along the Xin’anjiang River 
from 2008 to 2017. Twenty-four water quality indica-
tors, according to the environmental quality standards 
for surface water (GB 3838-2002:

  (11)

Here, di represents the horizontal distance between 
the observed points and interpolation points, while k is 
the distance power. All interpolation calculations for 
IDW were performed using ArcGIS 10.2 software. The 
inputted data comprised coordination location, grade 
value for Al2O3, Fe2O3, RSiO2, and TSiO2 from the upper 
bauxite horizon, and 12.5 m for the distance of grid 
points. The grid point distance is selected based on the 
sample space. In the field, sampling has been performed 
every 25 m laterally from one test pit to another. There-
fore, the grid point distance is half from the sample space 
or 12.5 in the calculation. Meanwhile, the IDW interpo-
lation uses power two (2) since the variance is greater 
than 1. The distance calculation has also considered the 
gentle to wavy hill-sloping topography.

The interpreted band math value has been validated 
by combining the band math results with geochemical 
data from XRF and wet analysis, such as the grade of 
Al2O3, Fe2O3, TSiO2, and RSiO2. Practically, data valida-

tion for the mineral map has been performed by utilizing 
the band math images as the base map of each spatial 
elemental map. For instance, the band math images of 
gibbsite overlapped with the IDW plots of Al2O3, since 
gibbsite is mainly composed of Al2O3. A similar ap-
proach was done for band math goethite, which is used 
as the base map for Fe2O3, band math kaolinite as the 
base map plots of RSiO2, and band math quartz as the 
base map plots of SiO2. The grade of each major element 
was also presented in the low to high range.

2.3. Study Area

The study area focused on the surrounding bauxite 
mining site in the Tayan District, Sanggau, West Kalim-
antan, Indonesia, a region in the southern part of the Ka-
puas River. The study area is located in the equator line 
and based on the regional physiography, and it belongs 
to the Schwaner Block (Bemmelen, 1949). West Kalim-
antan is one of Indonesia’s most significant resources 
and reserves of bauxite, situated on a tropical island with 
a high rainfall rate and dense vegetation. Bauxite is the 
primary source of aluminum ore production. Two alu-
mina smelting plants were established in the study area. 
The preliminary geochemical studies conducted by Nu-
graheni et al. (2021) and Putri et al. (2021) revealed 
that the sediment residue resulting from bauxite benefi-
ciation and red mud produced by the refinery process 
comprises scandium (Sc) and gallium (Ga) concentra-
tion. Therefore, with the evolution of this discovery, a 
regional study for mineral mapping should be performed 
to constrain the investigation area.

3. Results

2.1. Band math mineral

The spectra used to detect the mineral assemblages 
and create a mineral map range from 0.4 to 2.5 m, as 
shown in Figure 4. According to figure 4, kaolinite clay 
mineral mainly occupies lowland to gentle hill areas 
with dense vegetation cover. Clayey soil is identical to 
the plantation areas, which can be saturated by water. 
The gibbsite distribution has a similar pattern with kao-
linite, indicating that kaolinite is present as neomor-
phosed mineral that constitutes the bauxite formation. 
Gibbsite or Al-OH-bearing minerals have a distinct ab-
sorption at 0.85 to 0.88 μm (band 5), 1.58 to 1.64 μm 
(band 6), and 2.15 to 2.22 μm (band 7). Fe-OH or goe-
thite exhibits an absorption feature at 2.254 m and 
changes to 2.251 μm (band 7), relevant to the spectral 
patterns of Kokaly et al. (2017). The changes in the ab-
sorption features of goethite are suspected to be related 
to bauxite texture from concretion to earthy. The distri-
bution of goethite occupies the mining exploration, ben-
eficiation, and tailing areas. In the exploration areas, the 
iron-bearing mineral of goethite predominantly occurs 
in steep terrain, marsh, and soil.
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A combination of mineralogical maps based on re-
mote sensing and the local geological map shows that 
kaolinite and quartz were mainly distributed in the allu-
vial deposits as denoted by high band value. Meanwhile, 
the rock exposures from granodiorite to diorite are main-
ly weathered to kaolinite, as shown by a variation in the 
range of moderate band value. A similar distribution pat-
tern for kaolinite and gibbsite indicates that the parent 
rock contains abundant aluminosilicate minerals. The 
aluminosilicate minerals as the precursor minerals are 
primarily weathered to kaolinite followed by a pro-
longed weathering process to produce gibbsite. The dis-
tribution of goethite seems different from the three min-
eral assemblages. They are mainly associated with the 
weathering product of diorite and pyroxene diorite, as 
evidenced by high band value of goethite.

2.2.  Faults and fractures detection  
using ALOS PALSAR

The genesis of bauxite laterite is associated with the 
structural deformation of uplift, faults, and fractures. 
The tectonic uplift exposed intrusive igneous rocks and 
further weathering to form bauxite laterite. Faults and 

fractures have also contributed to leaching and concen-
trating the critical metals in the bauxite horizon. These 
geological structures are well identified as lineaments 
under identification using interferometric SAR because 
SAR exhibits a high radio wave penetration capacity.

The main structural trends in Figure 5 are NW-SE 
and NNE-SSW. The pattern of radial lines (green lines) 
indicates the occurrence of multiple intrusions which 
produce different rock characteristics. The multiple stag-
es of magmatic intrusions generated different igneous 
rocks and mineral compositions as locally mapped in 
Figure 1. Dense lineaments suggest that the area under-
went tectonic deformation, including the uplifting pro-
cess of igneous rocks to the surface, which also drove 
the fault reactivation. High-density lineament associated 
with structural features potentially becomes a permeable 
zone to intensify the weathering process. However, in 
SAR processing, the roughness is not solely related to 
the structural geological features but also indicates the 
surface’s acidity (pH) level (Saepuloh et al., 2016). 
Roughness in the southwest direction of the intrusion is 
subjected to the combination of the structural features 
and surface acidity as tailing materials are capable of 

Figure 4: Mineral distribution map based on simple band rationing algorithm (SBR)
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contributing to the contamination of surrounding soils 
and groundwater.

2.3.  Results of geochemical analysis  
and mineralogy

Multispectral remote sensing can detect minerals and 
represent them as a spectral pattern, which is then pro-
cessed thoroughly to produce the mineral band math at a 
range of low to high. To validate the band math, the geo-
chemical data has been performed accordingly from the 
upper (zone A), middle (zone B), and lower bauxite ho-
rizon (zone C). The geochemical data are plotted in the 
mineral distribution map to observe the reliability of re-
mote sensing data. The bauxite geochemical data are 
summarized in Table 3 for the XRF result and Table 4 
for the ICPMS result.

The concretion factor is the ratio of compacted baux-
ite concretion obtained after the washing process against 
the total weight of crude bauxite. The XRF results in 
Table 3 show that the concretion factor controls the con-
centration of Al2O3 and Fe2O3 in bauxite samples. The 
results suggest that the concretion factor strongly corre-
lates with the mineral assemblages in washed bauxite. 
Bauxite samples derived from pyroxene diorite have a 
higher concretion factor than other parent rocks. The 
bauxite characteristics from four different parent rocks 
also denote that pyroxene diorite and diorite tend to have 
higher grade of Fe2O3 and Al2O3. In contrast, bauxite de-
rived from quartz diorite and granodiorite exhibits high-
er grades of SiO2 and RSiO2.

The precursor minerals in pyroxene diorite contain 
subordinate pyroxene and hornblende as accessory min-
erals. These primary minerals potentially altered to iron-
oxide-hydroxide secondary minerals and increased the 
concentration of Fe2O3, as shown in Figure 6. The posi-
tive plot correlation of goethite mineral (Fe-O-OH) and 

scandium (Sc) strongly suggests that the scandium en-
richment is associated with the presence of goethite as 
the Sc-bearing mineral. A similar positive bivariate plot 
has been depicted for gibbsite vs scandium concentra-
tion. However, the positive correlation is suspected due 
to iron encrustation on bauxite ore. A negative plot cor-
relation between kaolinite vs scandium and quartz vs 
scandium implies that scandium has the poor capability 
to adsorb on the kaolinite surface or associate with 
quartz.

The information from mineralogy and geochemical 
data clearly emphasizes the focus of study to compare 
the band math mineral value from different parent rock 
domaining, including their bauxite mineral assemblage 
produced by the weathering of each parent rock. Based 
on Table 3, the highest concentration of Fe2O3, Al2O3, 
TSiO2, and RSiO2 is mainly found in the upper bauxite 
zone (zone A). Thus, geochemical plots for remote sens-
ing validation mainly used the grade value from the A 
zone. Another distinct feature in Table 3 displays that 
the elevated concentration of Fe2O3 will reduce the con-
centration of alumina (Al2O3). This result significantly 
justifies the mineral band value for gibbsite and goethite.

The scandium is mainly enriched and concentrated in 
the crude bauxite (upper zone or zone A) relative to par-
ent rock. The ICPMS in Table 4 documents the vertical 
geochemical profile of scandium from latosol to parent 
rock samples with an additional comparison between 
crude and washed bauxite and sediment residue products 
from each bauxite zone. Crude bauxite refers to ore 
bauxite obtained from a test pit, whereas washed bauxite 
refers to the crude bauxite that has been washed thor-
oughly to remove impurities. The washing process was 
performed in the beneficiation plant, and the residue was 
called sediment residue. The distinct feature from Table 
4 shows that the latosol or topsoil from the weathering of 
pyroxene diorite can concentrate more scandium com-

Figure 5: Lineament 
reconstruction based on ALOS 

PALSAR satellite imagery
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Table 3: Summary of geochemical data from XRF analysis

Sample 
Code

Bauxite 
zone

Thickness 
(m)

Sample space 
(m)

Concretion factor 
(CF; in %) Al2O3 (%) Fe2O3 (%) RSiO2 (%) TSiO2 (%)

Parent rock: Quartz diorite (Figure 1)
E1 A 2.2 50 41.72 54.85 6.84 2.82 11.18
E28 A 2 50 45.26 44.84 5.59 4.25 25.57
E28 B 0.9 50 36.49 41.17 6.1 2.15 29.39
E153 A 2 25 69.7 52.47 9.29 3.47 0.55
E153 B 0.7 25 60 51.43 6.46 4.1 16.31
E228 A 2 25 43.7 47.63 4.85 4.25 25.25
E228 B 2 25 45 41.6 4.44 3.41 37.02
Parent rock: Pyroxene diorite (Figure 1)
T100 A 2 25 70.2 37.5 35.12 0.97 2.33
T100 B 2 25 66.3 52.95 12.78 1.51 4.28
T100 C 2 25 50 45.77 19.6 2.53 8.54
T1003 A 2.2 25 69.4 50.09 17.79 0.99 2.66
T1043 A 2 25 63.6 48.78 17.73 2.03 5.35
T1043 B 1.8 25 58.9 48.06 14.43 2.43 11.17
T1076 A 2 25 65.2 32.31 34.52 2.06 13.18
T1076 B 1.4 25 66.6 40.76 21.98 2.5 14.27
Parent rock: Diorite (Figure 1)
T1011 A 2 25 42.1 51.02 12.37 2.02 6.24
T1082 A 2 25 46.5 51.39 14.43 2.03 6.75
T1082 B 1.3 25 41.2 45.15 13.29 2.97 16.62
T1087 A 2 25 62.5 52.36 9.89 2.46 9.39
T1087 B 2 25 56 40.73 17.76 3.46 20.28
T1088 A 2 25 60.9 50.23 14.43 2.64 6.91
T1088 B 1.6 25 58.8 48.32 14.31 2.8 10.47
T133 A 2 25 48 52.37 11.71 2.2 6.82
Parent rock: Granodiorite (Figure 1)
D01 A 2.3 25 57.6 43.98 6.72 3.92 28.39
D10 A 2.1 25 37.6 48.5 6.72 4.4 20.8
D100 A 2.1 25 50 48.75 5.23 4.24 22.62
D1004 A 1.9 25 51.8 48.18 6.09 4.16 22.41
D1007 A 2 25 46.8 51.85 5.28 2.8 16.67
D1007 B 0.6 25 42.3 39.87 4.87 2.38 38.89
D1008 A 2 25 42.1 48.42 5.16 3.67 23.15
D1008 B 2.2 25 40.4 46.95 5.76 3.85 24.87

pared to latosol from quartz diorite. The capability to 
concentrate scandium is associated with the presence of 
abundant organic litter as a vital carbon input in laterite 
paleosoil. Carbon tends to form covalent bonds with iron 
minerals and take up scandium during leaching. Mean-
while, the relative abundance of organic litter is linked 
to vegetation cover. As remote sensing data primarily 
records the spatial information from a surface, a careful 
selection procedure for geochemical data is essential to 
consider.

A correlation test of bivariate diagram has been per-
formed to support the interpretation of the relationship 

between scandium towards other major elements. This 
diagram is to understand the behaviour between major 
elements and scandium during lateritisation (see Figure 
7). The figure illustrates that the elevated concentration 
of scandium is linear to the increasing saturation of 
Al2O3 and Fe2O3. The beneficiation process has removed 
some of the encapsulated iron minerals on bauxite ore, 
leading to the depletion of Sc concentration in the 
washed bauxite sample. The positive correlation be-
tween Fe2O3 vs Sc indicates that scandium is preferen-
tially to be incorporated into goethite. The incorporation 
of scandium into goethite structure occurred via isomor-
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Table 4: Representative results for scandium concentration 
in various types of samples

Parent 
rock

Sample 
Code Sample Type Sc concentra- 

tion (ppm)
Pyroxene 
diorite T100 Latosol 41.9

T100 Crude bauxite  
(Zone A) 53.3

T100 Crude bauxite  
(Zone B) 42.6

T100 Clay 39.4
T100 Parent rock 15.1

T100 Washed bauxite  
(Zone A) 52.6

T100 Washed bauxite  
(Zone B) 47.6

T100 Sediment residue 
(from bauxite zone A) 40.1

T100 Sediment residue 
(from bauxite zone B) 32.6

Quartz 
diorite E1 Latosol 29.6

E1 Crude bauxite  
(Zone A) 44.3

E1 Crude bauxite  
(Zone B) 33.1

E1 Clay 24.4
E1 Parent rock 11.7

E1 Washed bauxite  
(Zone A) 42.9

E1 Washed bauxite  
(Zone B) 31.1

E1 Sediment residue 
(from bauxite zone A) 19

E1 Sediment residue 
(from bauxite zone B) 23.7

phous substitution (Qin et al., 2021). Additionally, scan-
dium is preferentially adsorbed on goethite surfaces 
(Qin et al., 2021). Meanwhile, the compatibility of 
gibbsite for the scandium uptake via ionic substitution 
seems debatable due to significant differences in the 
ionic radii.

2.4.  Elemental mapping applied to band math 
mineral

The elemental distribution map is applied to band 
math mineral map to validate the surrounding mining 
area, since the data for elemental map were collected 
from the bauxite test pit (as shown in Figure 8). Both 
mineral band math and plotted geochemical data were 
depicted from low to high value. The value represents 
the relative abundance of the ore-bearing minerals dis-
tributed in the studied areas. Validation results show dif-

ferent performances for each mineral map. From Figure 
8, high-grade Al2O3 obtained from XRF analysis mainly 
occupied the low gibbsite band math, with an occasional 
presence in the high band math value. This validation 
result suggests that a slight distribution of gibbsite as 
observed using satellite images potentially yielded by 
high-grade alumina. In contrast, the abundant distribu-
tion of quartz mainly exhibits low-grade silica for the 
bauxite-derived from diorite and pyroxene diorite and 
low to moderate grade silica for the bauxite derived from 
quartz diorite and granodiorite.

A proper trend of the mineral abundance and the 
grade value was shown for goethite and kaolinite. The 
high to moderate grade of Fe2O3 mainly occupied the 
moderate to high band math value of goethite in many 
laterite outcrops. An exclusion occurred in the surround-
ing tailing and washing plant. A contrast overlaid data of 
moderate value of goethite band math, and low-grade 
Fe2O3 revealed iron oxide-hydroxide contaminants from 
the acid refinery process in bauxite. A proper fitting of 
kaolinite band math to RSiO2 grade indicates that band 
math value is valid to determine the distribution of kao-
linite either in outcrops or tailing areas.

2.5.  Mineral mapping in bauxite laterite  
and surrounding mining areas

The mining concession includes the exploration and 
production areas, tailing pond, sediment residue pond, 
and refinery plant. Domaining the surrounding mining 
sites is essential to manifest the target area through the 
collection of the exploration area. This process uses the 
spatial patterns of the mineral assemblage to generate 
the distribution of Sc-bearing minerals and other mineral 
assemblage found in bauxite laterite.

As the weathering process occurs vertically and later-
ally, information about the parent rocks and the vertical 
weathering profile is important to determine the distribu-
tion map of the ore-bearing Sc. In the vertical weather-
ing profile of bauxite, goethite occupies the top bauxite 
horizon that commonly contains ferricrete and abundant 
spherical bauxite concretion texture. The bigger concre-
tion texture is bigger than the earthy bauxite. The bigger 
concretion occupies the top and gradually changes to an 
earthy texture on the lowest horizon. Thus, geochemical 
data from the top bauxite horizon is primarily used to 
plot the grades of Fe2O3. The mineral mapping for the 
ore-bearing Sc is acquired from band math validation of 
goethite to determine the accuracy of the interpreted 
goethite band math due to the limited scandium data. In 
the 2D mineral map, the results suggested that goethite 
or secondary iron mineral and the Sc-bearing mineral 
were disseminated in moderate to high-value band math 
of goethite, as shown in Figure 9. Goethite distribution 
is mainly associated with gibbsite, despite having a con-
trast enrichment pattern of high-grade goethite, which 
corresponds to a moderate grade of bauxite and vice 
versa (see Figure 9).
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Figure 6: Bivariate plots depicting scandium concentration in association with gibbsite, goethite,  
quartz, and kaolinite minerals.

Figure 7: Bivariate plots depicting scandium concentration and covariation trends with Al2O3, Fe2O3, TSiO2, 
and RSiO2 major elements. Samples were collected vertically from test pit, from top to bottom consist of 

LA- latosol; CBXA-crude bauxite from the upper bauxite zone (A zone); CBXB-crude bauxite from the lower 
bauxite zone (B zone); CZ-samples from clay zone; PR- rock samples from parent rocks. Additional samples of 

WBXA- washed bauxite from A zone were used to compare with the crude samples.
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The group plots of gibbsite and kaolinite in Figure 9 
evidenced that the gibbsite formation is associated with 
the neomorphism of kaolinite. The assemblage minerals 
suggest that their presence is derived from their precur-
sor minerals’ leaching and enrichment processes in par-
ent rocks. Thus, the abundant distribution of gibbsite 
and kaolinite plots denotes that their parent rock is felsic 
to intermediate in composition. Kaolinite is also dissem-
inated in the washing plant, tailing pond, and along the 
lowland areas nearby the refinery plant. In contrast, the 
goethite distribution is slightly found in the surrounding 
washing plant and tailing pond, which contains 3-15 
wt% of Fe2O3. Apart from this approach, field visits and 
sample collection are still effective in validating the 
classified mineral map.

4. Discussions

West Kalimantan is known for the existence of a 
bauxite belt that stretched NW-SE from the Singkawang 
to Kendawangan areas. The bauxite deposit in the prov-
ince is mainly related to the intense paleo-weathering of 
igneous parent rock during the Cretaceous period. The 
bauxite deposit comprises diagnostic alteration patterns 
with distinctive minerals, which depend significantly on 
the types of parent or source rocks.

Bauxite deposits occurred during the fundamental ge-
netic process of bauxitisation (see Figure 10), reliant on 
the parent rock’s external controlling factors, such as 
physiochemical condition of the parent rock, tempera-
ture, tectonic, hydrology, and topography. Bauxite later-

Figure 8: Mineral map reconstruction from a combination of spectral 
enhancement products using Landsat-OLI 8, field geological mapping,  

and geochemical data.

Figure 9: Spatial distribution of goethite  
as Sc-bearing mineral and bauxite 

assemblage minerals around Tayan areas
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ites are mainly produced in tropical geographic areas by 
weathering, which enriches alumina, iron, and trace ele-
ments of scandium and gallium (Nugraheni et al., 
2021). The enrichment of scandium corresponds to the 
ionic substitution with Fe3+ in a goethite crystal structure 
or adsorption on a crystal surface. Multispectral remote 
sending is essential to determine the mineral composi-
tion in the bauxite mining site and delineate its distribu-
tion for exploring scandium-bearing minerals.

According to the schematic illustration in Figure 10, 
the early stage of weathering is the formation of contrac-
tional cracks that enlarge along the intense weathering 
process. Ferrihydrites [Fe5HO8, 4H2O] are mainly filled 
cracks, while cliachite or colloidal aluminum hydrox-
ides constitute most bauxite ore formed in the core be-
tween the contraction cracks. Transformation of gibbsite 
nucleation until goethite encapsulation is clearly ob-
served under the reflected light microscope (middle pho-
tos of Figure 10) and polarized light microscope (lower 
photos of Figure 10). Parent rocks predominantly com-
posed of plagioclase are used to generate an abundant 
Al-rich phase during weathering, while ferromagnesian 
minerals, which occasionally present as an accessory 
mineral, contribute to enveloping the bauxite ores dur-
ing further tectonic and compaction stages. The relict or 
resistant minerals, namely rutile, quartz, trace ilmenite, 
and sphene, initially occurred during the burial of weath-
ered rocks together with neogenetic minerals, including 
kaolinite, gibbsite, goethite, and hematite. Gibbsite nu-

cleation occurred progressively with the formation of 
goethite. Therefore, the maximum enrichment of the Sc-
bearing minerals (goethite) and bauxite ore (gibbsite) 
occurred at the top of the bauxite horizon. The petrogen-
esis study was used to determine and justify the geo-
chemical data overlaid with band math from the satellite 
image processing. This study is ultimately used to gener-
ate a mineralogic map, particularly the distribution of 
Sc-bearing minerals in the study area.

A combination of the interpreted structure (see Fig-
ure 5), geological rock unit (see Figure 2), and mineral 
mapping suggests that parent rock-related intrusion bod-
ies separated by the interpreted fault exhibit different 
magma compositions. Variability of the magma compo-
sition depends on the magma supply, mixing, and inter-
action with the country rocks. The magma composition 
contributes to the presence of iron minerals as the host 
mineral for scandium. The intrusion bodies in the south-
ern part of Kapuas River to the east predominantly con-
tain decomposed diorite and pyroxene diorite rocks. To 
the west of the intrusion body, the bauxite weathering 
profile is derived from granodiorite and quartz diorite, 
exhibits a moderate band math value of goethite, and in-
dicates that Sc-bearing minerals are only in minor pro-
portion.

This study is used as a proxy to determine the pros-
pect of utilizing tailing and sediment residue materials 
for scandium extraction in the future. Based on the min-
eral distribution map in the surrounding tailing areas, it 

Figure 10: A schematic illustration of bauxite ore petrogenesis based on a diagnostic of its concretion  
to pisolite texture and mineral assemblage. Petrogenesis was interpreted from the collective laboratory  

examination for mineragraphy (middle photomicrographs) and thin section petrography (lower photomicrographs).  
Lower thin section photos were taken from Nugraheni et al. (2021)
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can be inferred that goethite primarily occupies the tail-
ing pond and beneficiation areas despite having a minor 
concentration. The plotted geochemical data distributed 
around the tailing pond and bauxite washing plant shows 
that the iron oxide grade ranges from 5 to 15 wt%. High-
grade iron minerals are mainly disseminated within the 
bauxite laterite derived from diorite. On the contrary, 
kaolinite is distributed widely around the tailing pond, 
washing plant, and laterite outcrop derived from quartz 
diorite and granodiorite weathering. A similar distribu-
tion has been shown for the quartz mineral, in which 
abundant quartz (TSiO2) is associated with the low-
grade bauxite derived from quartz diorite. The delineat-
ed areas relating to the emplacement of Sc-bearing min-
erals are structurally located in association with intru-
sion bodies and faulted zones. Finally, it is essential to 
characterize the mineralogy in the exploration and ben-
eficiation areas. The beneficiation area is generally used 
to emplace the sand and clay materials separated from 
the bauxite ore through washing treatment. Utilizing re-
mote sensing for mineral mapping, we can consider us-
ing tailing and washing plants to recover scandium.

The geological information provided in this study is 
significantly dependent on the spatial resolution of the 
sensor with any form of bias subjected to the sensor res-
olution and the atmospheric correction. Landsat exhibits 
30 m resolution for multispectral bands (Harris et al., 
2011); hence, this study is preferentially useful for re-
gional mapping that offers information on mineralogy, 
lithology, structure, and infrastructure for field planning. 
In detail, this preliminary study guided constraining the 
investigated area before estimating the scandium re-
sources and recovering the metals for the future.

5. Conclusion

Multispectral remote sensing is a promising mineral 
exploration, lithological, and lineament mapping tech-
nique. Mineral mapping depicts the distribution of relict 
and neomorphosed minerals found in bauxite, such as 
quartz, gibbsite, goethite, and kaolinite. The distribution 
of mineral assemblages has been interpreted from the 
combination of datasets containing band math of various 
grade plots, such as TSiO2, Al2O3, Fe2O3, and RSiO2. The 
most valuable bands used to detect the goethite as Sc-
bearing minerals are from the SWIR region or around 
0.43 to 1.03 μm, with the main absorption features at 2.0 
to 2.4 μm. The spectral range used for band math pro-
cessing has been generated from the USGS spectral li-
brary of minerals and rocks, with wavelengths ranging 
from 0.35 to 2.5 μm regions. Goethite is mainly accumu-
lated in the structurally related gentle hill topography 
with the weathering profile, mostly found at the top 
bauxite horizon. The moderate to high proportion of 
goethite as interpreted from the combination of band 
math and plotted geochemical data is commonly associ-
ated with the weathering of diorite and pyroxene diorite 

igneous parent rock. Goethite, which mainly occurred in 
a minor proportion as evidenced from the composite 
band math, was concentrated in the beneficiation areas, 
and tailing ponds. However, a minor proportion of goe-
thite does not indicate that it contains low-grade scandi-
um since most of the high-grade precious metal was also 
recovered from the low tonnage. Further laboratory ex-
amination must be considered for the scandium extrac-
tion from the tailing pond and beneficiation areas. How-
ever, priority should be taken for every bauxite washing 
and refinery process derived from diorite and pyroxene 
diorite source rocks. Multispectral remote sensing, com-
bined with the nature of geological information, acts as 
a proxy to map the Sc-bearing minerals for reconnais-
sance study. Future studies need to develop a technique 
for remote predictive mapping.
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SAŽETAK

Multispektralno daljinsko očitavanje područja distribucije minerala  
sa sadržajem skandija u rudnicima boksita pokrajine Zapadni Kalimantan,  
Indonezija

Rastuća potražnja za skandijem dovela je do velikih istraživanja sa svrhom njegova otkrivanja na jalovištima rudarskih 
postrojenja. U radu se prikazuje distribucija minerala sa sadržajem skandija u okolici rudnika boksita u okrugu Tayan, 
provincija Zapadni Kalimantan, Indonezija. Provedeno je preliminarno istraživanje primjenom optičkih senzora za raz-
likovanje minerala kao što su kaolinit, gibsit, getit i kvarc. Spektralni podatci prospekcije daju informacije o specifičnim 
stijenama i mineralima pomoću infracrvenoga (SWIR) kratkog vala, obrađenoga u niz traka sa spektralnim rasponima 
od 0,35 do 2,5 μm. Podatci su zatim uspoređeni sa strukturnim lineamentima iz slika ALOS PALSAR kako bi se otkrilo 
perspektivno područje s obzirom na strukturni sklop. Skup minerala, matematički obrađen, te geokemijski podatci do-
biveni pomoću rendgenske fluorescencije i masene spektrometrije s induktivno spregnutom plazmom upućuju na to 
kako su minerali koji nose Sc raspršeni pretežito u boksitnome, bočno izduženome tijelu nastalom trošenjem ishodiš-
noga (piroksenskoga) diorita. Spektralni je raspon getita kao minerala koji sadržava Sc od 0,43 do 1,03 μm, s glavnim 
apsorpcijskim značajkama od 2,0 do 2,4 μm. Nadalje, getit je uglavnom koncentriran na gornjemu boksitnom horizontu 
koji je u vezi sa strukturama boranja. Minerali koji sadržavaju rudu također su rasprostranjeni u jalovini i u još nekim 
područjima gdje se oplemenjivalo, ali u relativno niskome udjelu. Ovaj je rad nedvojbeno vrijedan jer prezentira praktič-
nu upotrebu daljinskoga prediktivnog kartiranja prilikom istraživanja mineralnih sirovina.
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skandij, getit, Landsat, ALOS PALSAR, kartiranje
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