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Abstract
The stability of a jointed rock mass is generally controlled by its shear strength that significantly depends on surface 
roughness. So far, different methods have been presented for determining surface roughness using 2D profiles. In this 
study, a new method based on the unsupervised pattern recognition technique using a combination of statistical, geo-
statistical, directional, and spectral methods for the quantification of the surface roughness will be proposed. To reach 
this goal, more than 10,000 profiles gathered from 92 surfaces of natural rock joints were scanned. The samples were 
collected from limestone cores of the Lar Dam located in the Mazandaran Province, Iran. After introducing a new spec-
tral index, determined from the fast Fourier transform for measuring the unevenness of rough profiles, statistical, geo-
statistical, directional, and spectral features revealing waviness and unevenness of the 2D profiles were extracted, and a 
representative vector and profile for each surface were introduced through the weighted mean and median of the profile 
features. Principal component analysis (PCA) was utilized for finding the direction of the maximum variance of informa-
tion. Then, clustering of the 92 samples was performed via K-means, and the silhouette measure was used in order to find 
the optimal number of clusters resulted in the creation of 13 clusters. To verify the procedure, a sample was selected in 
each cluster, and direct shear tests were performed on the samples. Comparing the experiments and the clustering re-
sults shows they are in good agreement. Thus, the method is an efficient tool for the quantitative recognition of surface 
roughness considering the waviness and unevenness of a surface.

Keywords: 
joint roughness coefficient; joint shear strength; pattern recognition; clustering; principal component analysis

1. Introduction

The shear strength of rock joints is an important fac-
tor controlling the stability of a jointed rock mass. So far, 
different models have been proposed in order to deter-
mine the shear strength of rough surfaces. The evalua-
tion of surface roughness in these models can be gener-
ally categorized into two groups. In the first group, the 
evaluation of surface roughness is performed using 2D 
profiles (Patton, 1966; Ladanyi, and Archambault, 
1970; Barton and Choubey, 1977; Kulatilake et al., 
1995; Zhao, 1997) while in the second group, 3D sur-
face assessment is performed via the creation of a 3D 
network on the rough surface (Grasselli et al., 2002; 
Xia et al., 2014; Tang and Wong, 2015; Yang et al., 
2016; Zhang et al., 2016; Liu et al., 2017). Although 
the latter yields a more precise illustration of a rough 
surface, it is more difficult and time-consuming. Fur-
thermore, in lots of in situ studies, the use of the method 
is neither practical nor affordable. In contrast, the appli-

cation of 2D profiles due to their simplicity is preferred 
in practice.

Among the 2D criteria, the Barton model is probably 
the most popular one for determining the shear strength 
of discontinuities (ISRM, 1978). However, the shear 
strength derived from the model can be highly variable 
due to the subjective selection of the joint roughness co-
efficient (JRC) for the 2D profiles. Moreover, no clear 
procedure was presented for the selection of the repre-
sentative profile(s) in each surface in order to be com-
pared with the standard ones.

So far, different methods have been used for the quan-
titative determination of surface roughness. Statistical 
methods have been applied for the assessment of the 
JRC (Tse and Cruden, 2019; Yu and Vayssade, 1991; 
Yang et al., 2001(b); Gao et al., 2015; Jang et al., 
2014; Li and Zhang, 2015; Zhang et al., 2014). In 
these methods, a relation is made between the JRC of 2D 
profiles and statistical parameters commonly attained 
based on Barton’s standard profiles. Also, surface rough-
ness has been quantified using fractal geometry (Man-
delbrot, 1983). The most important fractal methods for 

mailto:a.pakdaman@ut.ac.ir
mailto:mmoosavi@ut.ac.ir


Pakdaman, A.M.; Moosavi, M. 186

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 185-198, DOI: 10.17794/rgn.2023.2.14

evaluating surface roughness are the divider (Poon et 
al., 1992; Lee et al., 1990; Bae et al., 2011), box count-
ing (Feder, 1988; Jansson, 2006; Pierra et al., 2005), 
h-L method (Xie and Pariseau, 1994; Askari and Ah-
madi, 2007), variogram (Kulatilake, 1998), spectral 
(Shirono and Kulatilake, 1997), line scaling (Kula-
tilake et al., 1997), and roughness-length methods (Ku-
latilake and Um, 1999). In addition, the application of 
geostatistical methods for surface morphology recogni-
tion has widely been extended (Roko et al., 1997; Lian-
heng et al., 2018; Chen et al., 2015). The studies stated 
a direct relationship between the JRC and the slope of 
the semivariogram of the profile heights. On the other 
hand, with the vast use of Grasselli’s model (Grasselli 
and Egger, 2003), the concept of directional roughness 
has been implemented in 2D profiles (Tatone and Gras-
selli, 2010). More recently, spectral methods which are 
generally based on the Fourier series (Ueng and Chang, 
1990; Yang et al., 2001; Sun et al., 1988; Yong et al., 
2018), the Fourier transform (Pickerin and Aydin, 
2015), the wavelet transform (Asadi et al., 2015), and 
the power spectral density (Wang et al., 2019) have 
been utilized for the evaluation of the joint roughness.

Magsipoc et al. (2020) gathered 2D and 3D surface 
roughness quantification methods that are based on statis-
tical, fractal, and directional characterization of rough sur-
faces. Recently, Barton et al. (2023) reviewed joint 
roughness and its influence on the shear strength of rock 
joints while elaborating on issues related to the applica-
tion of this parameter to rock engineering problems. In 
another research study, Kulatilake and Ankah (2023) 
studied the current status of contact and non-contact 
methods utilized for the surface assessment of rock joints.

The determination of surface roughness based on 
only a single parameter due to its complexity does not 
seem to be sufficient. In other words, the waviness and 
unevenness of a 2D profile ought to be properly de-
scribed via different factors. Recent studies have focused 
on the application of more than one parameter for the 
description of a rough surface (Zhang et al., 2014; Gao 
et al., 2015; Wang et al., 2017; Wang et al., 2019; 
Fathipour-Azar, 2021).

Sampling interval plays an important role for joint 
roughness estimation when joint surfaces are scanned 

using discrete points (Yu and Vayssade, 1991; Tatone 
and Grasselli, 2010, 2013; Yong et al., 2018; Ankah et 
al., 2022). It is well understood that decreasing a sam-
pling interval will result in a rougher surface estimation 
(Kulatilake and Ankah, 2023; Barton et al., 2023). 
Furthermore, the scale effect is another factor that im-
pacts roughness evaluation. While some studies reported 
a negative scale effect (reducing roughness and shear 
strength) as a result of increasing the joint size, the oth-
ers stated a positive scale effect (Tatone and Grasselli, 
2013; Barton et al., 2023). Kulatilake and Ankah 
(2023) declared that roughness heterogeneity is the most 
crucial reason controlling this important effect.

The objective of this research is to recognize surface 
roughness based on 2D profiles using an unsupervised 
pattern recognition technique. To do so, statistical, geo-
statistical, directional, and spectral features revealing 
waviness and unevenness of the profiles will be used for 
an appropriate description of surface roughness. In this 
way a new spectral index is introduced for measuring the 
unevenness of rough profiles. Additionally, a quantified 
method for the identification of the representative sur-
face features and profile will be proposed. Then, the rock 
surfaces are clustered based on the features gained from 
the 2D profiles, so this method not only leads to the 
quantitative recognition of surface roughness but also 
limits performing tests to a few samples representing the 
features of clusters. To verify the procedure, experimen-
tal tests will be performed in order to be compared with 
the pattern recognition results. 

2. Methodology

In lots of civil structures excavated in a rock mass, 
numerous rock cores intersecting discontinuities having 
different roughness levels exist. In practice, performing 
the direct shear test on all the samples is neither possible 
nor affordable. Therefore, clustering the cores based on 
their roughness level and performing the test only on a 
few samples representing the clusters not only reduces 
the cost of the tests but also causes proper recognition of 
the surface roughness of the samples.

Pattern recognition is a procedure for classification 
and clustering based on measurement and observation. 

Figure 1: The unsupervised pattern recognition procedure
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The general procedure of unsupervised pattern recogni-
tion adapted for the surface recognition of rock joints is 
illustrated in Figure 1 (Duda et al., 2001). Firstly, scan-
ning of the rock surfaces and preparing profiles are per-
formed. Then, statistical, geostatistical, directional, and 
spectral features are extracted from 2D profiles, and a 
unique vector of features as well as a profile will be in-
troduced to each surface called “the representative vec-
tor and profile”, respectively. Next, principal component 
analysis (PCA) is applied for reducing overlaps between 
the features and observing the directions of maximum 
distribution of information. Finally, surfaces are clus-
tered via K-means, and the optimal number of clusters is 
found by the silhouette measure.

3. Sample Preparation and Surface Scan

92 natural joint samples were gathered from lime-
stone cores of the Lar Dam located in the Mazandaran 
Province, Iran. Natural fractures not only help to present 
a realistic recognition of rock surfaces but they can also 
provide a broad range of surface roughness. The rock 
fractures were selected such that they have no fillings. In 
addition, an attempt was made to choose those with the 
least surface weathering though this effect is an insepa-
rable part of natural fractures. The shortest diameters of 
samples are 85 mm (PQ) and 63.5 mm (HQ) while the 
longest diameters range from 63.5 to 100.23 mm. From 
a lithological point of view, the samples were collected 
from limestone layers.

During the preparation of the rock samples, two ends 
of the surface were cut in the direction of the natural 
fracture to keep the fracture surface horizontal (Mural-
ha et al., 2014). Then, the lower part was put in a mold 
and cement grout with a water-to-cement ratio (W/C) 
equal to 40 percent was added. In order to prevent crack-
ing, a chemical additive with the ratio of 0.5 percent to 
cement was used. Figure 2 shows a prepared sample.

Joint surfaces were scanned using a laser scanner 
frame developed in the rock mechanics laboratory at the 

University of Tehran (see Figure 3). The precision of the 
laser scanner was 0.02 mm, and the sampling interval 
was set at 0.5 mm in two perpendicular directions (x and 
y directions, as shown in Figure 4). Depending on the 
sample size, 110 to 160 profiles on each surface were 
reconstructed in an assumed shear direction (the direc-
tion of the longer diameter of the core) resulted in the 
generation of more than 10,000 profiles. As the values of 

Figure 5: A generated profile of the surface  
in the shear direction

Figure 2: A prepared sample for scanning the rough surface Figure 3: The scanning device

Figure 4: The reconstructed surface
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the profile features highly depend on the shear direction 
(Magsipoc et al., 2020; Kulatilake and Ankah, 2023; 
Barton et al., 2023), the purpose of assuming a specific 
shear direction is to calculate the features along it. In ad-
dition, validation tests will be performed in the same di-
rection. Figures 4 & 5 show a 3D scanned surface and a 
profile of the sample in the shear direction, respectively.

4. Feature Extraction

Feature selection plays a critical role in order to fulfill 
the goal of clustering. In this study, the goal is to cluster 
surfaces using 2D profiles based on their roughness lev-
el. Therefore, features having a definite relationship with 
roughness are selected. In this regard, statistical, geosta-
tistical, directional, and spectral features selected for the 
pattern recognition procedure will be described in this 
section. Before the extraction of the features, profile co-
ordinates are translated according to the mean line (the 
line with respect to which the sum of the positive and 
negative areas above and below the line is almost zero).

Three statistical parameters (δ, λ and Z2 were selected 
(Equations 1-3)) based on their frequent applications in 
the prediction of JRC (Li and Zhang, 2015). Besides, 
the parameters give an insight into the waviness and un-
evenness of a profile.

  (1)

  (2)

  (3)

Where dx and dy are x and y increments of the profile 
(mm), respectively; N is the number of sampling points 
(dimensionless); L is the projected length of the profile 
in the x direction (mm); Lt is true length of the profile 
(mm); Rz is the maximum height of the profile (mm). 
Equations 1-3 reveal the fact that λ and Z2 which are di-
mensionless parameters tend to show the waviness and 
unevenness of a profile, respectively, while δ which is 
the other dimensionless parameter is the combination of 
the both.

The semivariogram of the profile heights (Equation 
4) is used in order to extract geostatistical features of a 
profile.

  (4)

Where y(xi) and y(xi+h) are the height of a profile 
(mm) on the abscissa xi and xi+h, respectively; h (h∈N+ 
which is a dimensionless factor) is the interval in which 
a paired sample is taken; N(h) is the number of paired 

samples. The distance after which sample pairs behave 
independently is the Range (a1), and the corresponding 
γ(h) is the Sill (C1+C0). The Nugget (C0) is the γ(h) when 
h → 0, and the Partial Sill C1 is the difference between 
the Sill and Nugget (see Figure 6). In a geostatistical 
analysis, the experimental semivariogram is obtained 
based on the data points. Then, the theoretical semivari-
ogram (the Gaussian model in this study because of its 
higher goodness of fit) is fitted in order to find the geo-
statistical parameters (C1, C0, a1) (Lianheng et al., 
2018). In this study, the units of γ(h), C1, C0 are mm2 
while a1 is a dimensionless parameter. Due to the fact 

that  (which is determined in mm2) has a direct rela-

tionship with the JRC (Lianheng et al., 2018), this pa-
rameter (implying waviness of a profile) was selected  
as a geostatistical feature for the pattern recognition 
 procedure.

Figure 6: The semivariogram diagram

After a wide application of 3D directional models 
(Grasselli et al., 2002; Grasselli and Egger, 2003), the 
concept of directional roughness has been implemented 
in 2D profiles (Tatone and Grasselli, 2010). Accord-
ingly, different threshold dips (θ*) in the test direction 
are considered, and the sum of the profile segments with 
dips greater than the threshold divided by the total length 
of the profile is calculated as the  (called normalized 
contact area). Then, by fitting Equation 5 to the graph of 

 (as depicted in Figure 7), the directional rough-
ness parameter is acquired.

  (5)

Where L0 is the normalized length of the profile facing 
the shear direction greater than an angular threshold 0°;  

 is the maximum slope angle of profile segments fac-
ing the shear direction (degrees); C is a dimensionless 

fitting parameter.  is selected as a directional 

roughness parameter (determined in degrees) for the sur-
face assessment procedure. This parameter tends to 
show the unevenness of a rough profile.
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The transformation of rough profiles from distance to 
frequency domain helps to divulge precious information 
about a profile. In these techniques, each profile is treat-
ed as a signal, and various spectral transformation tech-
niques such as the fast Fourier transform (FFT) and the 
power spectral density (PSD) are imposed on the profile 
(Pickerin and Aydin, 2015; Wang et al., 2019). After 

introducing a new spectral index , achieved us-

ing the fast Fourier transform, another spectral feature 
(Pf), derived based on the power spectral density, is 
 described for the quantification of roughness in 2D 
 profiles.

Since roughness profiles are discrete, the fast Fourier 
transform (FFT) is used for the transformation. Since 
negative frequencies have no physical meaning, the sin-
gle sided fast Fourier transform is obtained. Hence, after 
transforming the profile to the frequency domain, fre-
quencies greater than a threshold (which is 0.1 1/mm in 
this study) will be removed. Then, a smooth profile will 
be created by applying the inverse form (see Figure 8). 
The difference between the true length (LT) and the fil-
tered true length ( ) of the profile (Equation 6) 
was selected as a spectral feature for the pattern recogni-

tion technique. As can be observed in Figure 8,  

is related to the unevenness of a profile.

  (6)

The power spectral density (PSD) function of a pro-
file can be obtained by the calculation of the Fourier 
transform of the autocorrelation function of the profile. 
Similar to the Fourier transform, the single-sided power 
spectral density function is used. Wang et. al. introduced 
Pf (Equation 7) based on 112 roughness profiles having 
a definite relationship with the JRC as a spectral feature 
(Wang et al., 2019).

  (7)

Where  is the average frequency of the components 
between  and ; An is the average power of 
the profile in the frequency interval (mm2); N is the num-
ber of sampling points (dimensionless). Pf (mm) was the 
other feature selected for the pattern recognition proce-
dure implying the waviness of a profile.

Figure 7: Relation between contact area ( )  
and threshold dip ( )

Figure 8: The tenth Barton standard profile  
and its filtered form

5. Feature Conditioning

The statistical, geostatistical, directional, and spectral 
analyses of a profile yield seven features for the pattern 
recognition procedure. The features are calculated for all 
the profiles of a surface in the shear direction. Feature 
conditioning including two main parts is explained here. 
First, the representative vector and profile of a surface 
are introduced. Then, principal component analysis 
(PCA) of the representative vectors is performed.

5.1.  Representative Vector and Profile  
of a Surface

Two methods (weighted mean and median) are used 
in this research for the calculation of a representative 
vector and profile of a surface. In the first method, the 
weighted mean (µi) and the standard deviation (σi) of  
the features (fi) on a surface are calculated using Equa-
tions 8-10.

  (8)

  (9)
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  (10)

Where Li and wi are the projected length (mm) and 
weight (dimensionless) of the th profile of a surface; M 
is the number of profiles on a surface (dimensionless); fi  
is the ith feature of a profile vector; µi is the weighted 
mean of the ith feature; σi is the standard deviation of the 
ith feature on a surface (measurement units of fi, µi, σi 
depend on the selected feature). Then, the outliers that 
are the profiles with (fi < µi– 3σi Or fi > µi + 3σi) are re-
moved. Finally, by recalculating the weighted mean and 
standard deviation of the features, the representative 
vector of a surface is defined.

In the second method, weighted medians of the pro-
file features are calculated. Accordingly, the ith feature of 
the profiles in a surface is arranged in ascending order, 
and the weighted median of a feature (fk) is the one ful-
filling Equation 11 (Cormen et al., 2001).

  (11)

The representative profile of a surface in the both 
methods is selected as the closest profile to the repre-
sentative vector. In this way, Euclidean distance was uti-
lized while prior to the calculation of the distance, the 
normalization of features and their representative values 
for each feature was performed for removing the scales. 
Despite the fact that in a significant portion of the 
scanned surfaces the representative profiles obtained 
from the weighted mean and median of the features were 
identical, in some surfaces the two were not matched.

5.2. Principal Component Analysis (PCA)

The selected features should be transformed so that 
their overlaps are reduced. Principal component analysis 
(PCA) is a linear transformation after which the features 
are uncorrelated, and the first few transformed features 
keep the most significant portion of information (see 
Figure 9). The PCA is carried out separately for the rep-
resentative mean and median vectors of the surfaces. 
The procedure for the PCA is as follows (Duda et al., 
2001):

Standard normalization of the representative vectors 
of 92 surfaces is performed by constructing the repre-
sentative feature matrix (X), and the covariance matrix 
(Σ) of the normalized representative vectors is calculat-
ed. Then, eigenvalues and eigenvectors of the covari-
ance matrix (Σ) are determined such that Equation 12 is 
obtained.
 ΣV = VD (12)

Where D and V are the matrices of eigenvalues (arranged 
in descending order) and eigenvectors, respectively. 

Next, features having little information should be elimi-

nated. Due to this, eigenvalues with  lower than a 

threshold (assumed 10–13 here) and the associated eigen-
vectors should be eliminated. No eigenvalues and eigen-
vectors were eliminated here for the representative sur-
face vectors. Finally, the transformation of the feature 
vectors will be performed using Equation 13.

 Y = VT Xnormalized (13)

Since the first component of the transformation keeps 
the most information, clustering will be performed using 
the first component of PCA.

Figure 9: Schematic illustration of principal component 
analysis

6. Clustering

Different methods such as sequential, hierarchical, 
and optimization-based techniques have been developed 
for clustering a dataset (Jain et al., 1999). In this study, 
K-means, which is an optimization-based technique, 
will be used. Hence, a criterion function based on the 
squared error is applied which tends to work properly 
with compact and isolated clusters (Equation 14). Clus-
tering is performed in four steps which are as follows 
(Everitt et al., 2011). First, cluster centers are selected. 
Then, each pattern is dedicated to the closest cluster 
center (the similarity measure for this purpose is Euclid-
ean distance). Next, cluster centers will be updated. Fi-
nally, the process is repeated until the convergence crite-
rion is fulfilled. Examples of the convergence criterion 
are the minimal reassignment of a pattern to a new clus-
ter or increasing the criterion function. Equation 14 
 presents the criterion function for pattern set Y and clus-
tering ς:

  (14)

Where  is the ith transformed representative feature 
vector belonging to the jth cluster; Ci is the jth cluster 
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Figure 10: Schematic view of the parameters of the 
silhouette measure

center; ct is the total number of clusters; ni is the number 
of patterns in the jth cluster. The method highly depends 
on the selection of the cluster centers and the number of 
clusters. Consequently, cluster centers were selected 
uniformly based on the dataset for reducing the former 
effect whereas the silhouette measure was used for de-
creasing the latter effect. Accordingly, clustering was 
performed for different cluster numbers (from 2 to 15 
clusters). The clustering was repeated 200 times, and the 
best result (the minimum convergence function) is re-
ported for each cluster number.

There are lots of measures by which the optimized 
number of clusters can be attained. To reach this goal, 
the silhouette measure was used in this study (Rous-
seeuw, 1987). This measure finds the optimal number of 
clusters according to the within cluster (as(i)) and be-
tween cluster distances (bs(i)) (as illustrated in Figure 

10) defined in Equations 15 & 16, respectively. The 
number of clusters by which the maximum average sil-
houette value (si(i)) is obtained (Equation 17), is con-
sidered the optimal number of clusters.

  (15)

  (16)

  (17)

Where ni is the number of patterns (transformed repre-
sentative feature vectors) in the ith cluster to which yi be-
longs; nk is the number of patterns in the kth cluster to 
which yi does not belong; d2(i,j) is the Euclidean distance 
between yi and yi patterns. Table 1 shows average sil-
houette values (s(i)) for different cluster numbers. It 
demonstrates the fact that both methods of calculating 
surface representative vectors (mean and median), yield 
13 optimized clusters. However, the representative me-
dian provides a little enhancement to the measure. 
Therefore, this technique was chosen for the comparison 
of the results with experiments, and a sample from each 
cluster is selected for conducting tests.

7. Experiments

Direct shear tests were performed on 13 selected sam-
ples for the calculation of the joint roughness coefficient 
(JRC). Hence, the upper part of the sample was encapsu-
lated while the spilt spacer (clay) had fully covered the 
encapsulated lower part of the sample (Muralha et al., 

Table 1: The average silhouette value in each method of determining the surface representative vector

Average silhouette value for clustering 
with representative median vector

Average silhouette value for clustering 
with representative mean vector

Number  
of clusters

0.6090.5952
0.5630.5593
0.5680.5694
0.5740.5595
0.5750.5586
0.5500.5747
0.5500.5598
0.5640.6139
0.5930.59910
0.6110.62511
0.6310.62612
0.6480.64213
0.6460.63514
0.6340.63915
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2014). Tests were performed in constant normal load 
(CNL) condition in which normal load was controlled 
by dead weight. The shear load was applied manually, 
and a long screw hydraulic pump was used to control the 
shearing rate. Shear and normal loads were recorded by 
pressure transducers (see Figure 11). Also, shear and 
normal displacements were recorded from the average 
of two potentiometers utilized in each direction. All the 
recorded data were gathered continuously by the data 
acquisition system.

The tests were conducted in a single step along the 
direction of the longer ellipse diameter (Muralha et al., 

2014). The shear stress-shear displacement and normal 
displacement-shear displacement graphs were plotted 
for each sample (see Figures 12 & 13). The reduction of 
the surface contact during the test was also calculated 
and corrected according to (Hencher and Richard, 
1989). JRC values are back-calculated using Equation 
18 (Barton, and Choubey, 1977).

  (18)

Where  is shear strength (Mpa); σn is normal stress 
(Mpa); JCS is the joint compressive strength (Mpa);  is 

Number Description

1 Movable box

2 Fixed box

3 Shear potentiometer

4 Normal potentiometer

5 Shear jack

6 Normal jack controlled by dead weight

7 Roller support for shear displacement

8 Roller support for normal displacement

Figure 11: Direct shear test setup for CNL condition

Table 2: The results of direct shear tests performed on selected samples

JRCBack calculatedτp(Mpa)σn(Mpa)Number of samples in the clusterCluster number
0.220.781.3621
2.511.201.7472
6.710.911.03133
8.421.441.54114
9.550.740.59125
10.801.31.0496
12.851.611.17127
13.701.681.1678
14.361.561.0049
17.841.471.16810
19.580.860.58411
21.331.891.02212
21.442.831.18113
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Figure 13: Normal displacement- shear displacement graph 
recorded during the direct shear test

Figure 12: Shear stress-shear displacement graph recorded 
during the direct shear test

Table 4: Feature vectors of the profiles presented in Figure 14

PfZ2λδCluster Number

0.00170.00490.00254.830.1080.0120.0061
0.00550.01390.00817.150.1830.0230.0162
0.01310.01360.03076.790.2000.0430.0183
0.01590.02710.01859.740.2620.0400.0324
0.02390.02300.046611.140.2810.0350.0345
0.02150.02750.04812.440.3130.0520.0456
0.0360.0310.05314.360.3390.0770.0517
0.0380.0290.08714.930.3260.0750.0498
0.05140.03400.121814.940.3650.0770.0589
0.03530.08090.044519.730.4870.0470.10210
0.09440.03270.174118.170.4870.0900.09611
0.13010.05720.218819.490.4690.1080.09812
0.16880.03310.326732.030.5590.1520.12713

Table 3 Representative feature vectors of the selected samples of clusters

Cluster Number δ λ Z2 Pf PCA1 JRCBack-calculated

1 0.006 0.012 0.108 4.62 0.002 0.005 0.0016 -4.11 0.22
2 0.016 0.023 0.181 7.57 0.006 0.013 0.0051 -2.96 2.51
3 0.022 0.044 0.221 7.03 0.035 0.011 0.0148 -2.20 6.71
4 0.032 0.037 0.263 10.06 0.018 0.022 0.0213 -1.41 8.42
5 0.037 0.036 0.285 11.32 0.043 0.023 0.0213 -1.01 9.55
6 0.043 0.057 0.306 12.82 0.055 0.027 0.023 -0.20 10.8
7 0.054 0.071 0.344 14.18 0.060 0.027 0.037 0.67 12.85
8 0.052 0.076 0.334 14.97 0.088 0.028 0.038 0.93 13.70
9 0.065 0.075 0.384 15.49 0.113 0.034 0.0527 1.86 14.36
10 0.103 0.050 0.490 19.73 0.046 0.081 0.0376 3.42 17.84
11 0.098 0.093 0.492 19.31 0.165 0.040 0.0976 4.45 19.58
12 0.101 0.116 0.497 19.26 0.227 0.057 0.1187 5.89 21.33
13 0.143 0.145 0.626 27.17 0.349 0.043 0.1930 9.55 21.44
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Figure 14: Profiles of the representative samples of clusters (arrows show the shear direction).

the residual friction angle (degrees) determined using 
Equation 19 for weathered rock joints.

  (19)

Where  is the basic friction angle (degrees); r is 
Schmidt rebound on a weathered joint surface (dimen-
sionless); R is Schmidt rebound on an unweathered rock 
surface (dimensionless). The results of 13 direct shear 
tests performed on the selected samples were summa-
rized in Table 2 while it also shows the number of sam-

ples in each cluster. The normal stress in Table 2 lies 
within the range 0.58-1.74 MPa which is a practical 
range for the stability analysis of rock slopes.

8. Comparison and Discussion

The representative feature vectors (derived from the 
median of the surface features) and the back-calculated 
JRCs for the selected samples of clusters were shown in 
Table 3. In addition, Figure 14 illustrates the associated 
representative profiles, and Table 4 demonstrates fea-
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tures of those profiles. The order of samples is based on 
the first component of PCA (which is called PCA1), so 
the higher PCA1, the rougher surface. The comparison of 

Figure 14 and Table 4 exhibits λ, , Pf tend to show 

waviness while Z2, ,  lean toward uneven-

ness, and   is the combination of the both in a roughness 
profile.

Tables 3 & 4 reveal statistical, geostatistical, direc-
tional, and spectral features have an ascending trend al-
though there are some exceptions. Consequently, using 
only a single parameter in order to describe surface 
roughness is not sufficient. In other words, more than 
one parameter should be selected such that the parame-
ters properly indicate waviness and unevenness of a pro-
file. This seems to be the most important reason for the 
disordering of the parameters that has been reported for 
Barton standard profiles (Gao et al., 2015; Jang et al., 
2014; Tatone and Grasselli, 2013; Lianheng et al., 
2018; Pickerin and Aydin, 2015; Asadi et al., 2010). 
Nevertheless, PCA1 in which the waviness and uneven-
ness of a profile are combined using the features, varies 
uniformly. Figure 15 depicts the relationship between 
the JRC and PCA1 for the clusters presented in Table 3 
demonstrating a strong correlation (R=0.94). Thus, 
PCA1 reflects the roughness level of the surfaces.

Comparing the JRC values back-calculated from test 
results with the order presented in Tables 3 & 4 shows 
that even though the general trend of the JRC values 
adapts to those obtained from pattern recognition analy-
sis, the results might be affected by two important sourc-
es that are the rebound value of the Schmidt hammer on 
rough surfaces and the experimental basis of the Barton 
model. The effect of weathering is incorporated into the 
model through residual friction angle and joint compres-
sive strength, both of which are calculated based on 
Schmidt rebound values. However, the rebound values 
of the Schmidt hammer highly depend on morphology 
of the sample. Indeed, surface irregularities might cause 
an unexpected reduction of the values (Aydin, 2008). 

Another source affecting the back-calculated JRCs is the 
experimental basis of the Barton model providing an ap-
proximation of surface roughness. Therefore, the argu-
ments imply that the back-calculated JRCs might not be 
accurate enough for the exact determination of surface 
roughness.

9. Conclusion

In this study, clustering of the joint surfaces was per-
formed based on a pattern recognition procedure using 
statistical, geostatistical, directional, and spectral fea-
tures. The proposed approach groups samples with al-
most similar JRC values using a systematic recognition 
of rock surfaces that relies on profile features describing 
the waviness and unevenness of the surface. Hence, 92 
natural joint surfaces producing more than 10,000 pro-

files were scanned, and δ, λ, Z2, , ,  

parameters were calculated for all the surface profiles. 

While λ, , Pf manifest waviness, Z2, ,  

reveal unevenness of the profiles, and δ is the combina-
tion of them both.

The representative vector of a surface was calculated 
using the weighted mean and median of the profile fea-
tures. Similarly, the representative profile of a surface 
was selected as the one closest to the representative vec-
tor. Thus, the representative surface vector and profile 
were introduced based on a quantitative procedure.

Principal component analysis (PCA) was implemented 
for the combination of the different features so that the 
directions with high-level information were assigned. In 
addition, the K-means was used for the clustering of the 
natural joint surfaces using the first component of the   
PCA analysis. Furthermore, the silhouette measure was 
applied in order to find the optimal number of clusters. 
The measure shows compared to the weighted mean, 
clustering of the surface roughness using the weighted 
median provides better cluster separation, and 13 clusters 
were assigned as the optimal number of clusters.

Assessing the representative features of the selected 
samples demonstrates although statistical, geostatistical, 
directional, and spectral features might seldom change 
in a non-uniform manner, PCA1 varies uniformly. There-
fore, this parameter was chosen as a reference in order to 
evaluate the surface roughness of samples.

Comparing the back-calculated JRCs of the selected 
samples with the results of clustering (PCA1 of the clus-
ters) shows the two have a good agreement (correlation 
coefficient = 0.94) though the results might be affected by 
the rebound values of the Schmidt hammer on rough sur-
faces and the experimental basis of the Barton criterion.

The approach can be applied for surface roughness 
quantification provided that all the samples are scanned 
with the same sampling interval (attention should be 

Figure 15: Relationship between the JRC and PCA1 for the 
clusters presented in Table 3
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paid to too large or too small sampling intervals result-
ing in neglecting or exaggerating irregularities of the 
surface, respectively). Furthermore, since the features 
are influenced by the scale effect, the proposed cluster-
ing method can be used on the condition that the samples 
have almost the same size.

The results revealed using only a single parameter for 
the recognition of a rough surface is not sufficient. Con-
sequently, a number of features showing the waviness 
and unevenness of a surface should be selected. This 
procedure was followed in this study and it resulted in a 
quantitative recognition of surface roughness.
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SAŽETAK

Procjena hrapavosti površine prirodnih stijenskih pukotina temeljena  
na tehnici nenadziranog prepoznavanja uzoraka pomoću 2D profila

Stabilnost raspucane stijenske mase općenito se kontrolira posmičnom čvrstoćom koja značajno ovisi o hrapavosti povr-
šine. Do sada su prikazane različite metode za određivanje hrapavosti površine pomoću 2D profila. U ovom radu predla-
že se nova metoda koja se temelji na tehnici nenadziranog prepoznavanja uzoraka kombinacijom statističkih, geostati-
stičkih, usmjerenih i spektralnih metoda za kvantifikaciju hrapavosti površine. Kako bi se postigao taj cilj, skenirano je 
više od 10.000 profila prikupljenih s 92 površine prirodnih stijenskih pukotina. Uzorci su prikupljeni iz vapnenačkih 
jezgri brane Lar koja se nalazi u pokrajini Mazandaran u Iranu. Nakon uvođenja novog spektralnog indeksa, određenog 
Fourierovom transformacijom za mjerenje neravnina hrapavih profila, izvučene su statističke, geostatističke, usmjerene 
i spektralne značajke koje opisuju valovitost i neravnine 2D profila, a reprezentativni vektor i profil za svaku površinu 
uvedeni su kroz ponderiranu aritmetičku sredinu i medijan značajki profila. Analiza glavnih komponenti (PCA) korište-
na je za pronalaženje smjera najvećeg odstupanja informacija. Zatim je grupiranje 92 uzorka provedeno putem metode 
K-sredina, a mjera siluete korištena je kako bi se pronašao optimalan broj grupa, a to je rezultiralo stvaranjem 13 grupa. 
Za provjeru postupka odabran je uzorak u svakoj grupi, a na tim uzorcima provedena su ispitivanja izravnog smicanja. 
Usporedba rezultata ispitivanja i grupiranja pokazala je dobro slaganje, stoga je ova metoda učinkovit alat za kvantitativ-
no utvrđivanje hrapavosti s obzirom na valovitost i neravnine površine.

Ključne riječi: 
koeficijent hrapavosti pukotina; posmična čvrstoća pukotina; prepoznavanje uzoraka; grupiranje; analiza glavnih kom-
ponenti.
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