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Abstract
This research focuses on conducting studies that predict the distance of blast-induced flyrock, which is an undesirable 
environmental phenomenon in open-pit mines. While there are experimental methods available for predicting blast-
induced flyrock, the complex process of assessing the distance of flyrock has reduced the efficiency of these approaches. 
This study employs artificial intelligence methods and statistical techniques to forecast the flyrock distance in the Sun-
gun copper mine. Thus, an Artificial Neural Network (ANN-MLP) and a new hybrid model of Artificial Neural Network 
(ANN) optimized by the Imperialist Competitive Algorithm (ICA), known as (ICA-ANN), are used to predict the flyrock 
distance, considering crucial parameters such as the number of holes, hole spacing, burden, total charge, specific drill-
ing, charge per hole and specific charge. The results showed that the Artificial Neural Network, with RMSE, MAE, and R2 
error values of 9.31 m, 7.10 m, and 0.81, respectively, was able to predict the flyrock distance well compared to the meas-
ured data in the test phase. However, the implementation of the imperialist competitive algorithm optimizer in the 
neural network enhanced the prediction of the flyrock distance, yielding RMSE, MAE, and R2 values of 5.66 m, 4.60 m, 
and 0.89, respectively. Finally, by performing sensitivity analysis on the input parameters of the flyrock distance, it was 
determined that the amount of explosive consumption and the number of holes have the greatest impact on the blast-
induced flyrock distance.
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1. Introduction

Mining blasting operations involve the design of a 
blast pattern and the implementation of methods to pro-
duce fragmented rocks with desired fragmentation using 
explosives placed within the specified holes. An effec-
tive and desired blasting operation not only results in 
proper rock fragmentation, but also substantially reduc-
es undesirable and unanticipated environmental issues 
caused by blasting, such as ground vibrations and fly-
rock (Esfandiari, 2021). Therefore, it is necessary to 
study the factors and parameters influencing these phe-
nomena to achieve a desirable blast operation. Flyrock is 
one of the unexpected occurrences in open-pit mine 
blasting. The flyrock phenomenon is the term used to 
describe the uncontrolled movement of fragmented 
pieces of rock that occur during the blasting operation. 
This phenomenon is a major cause of damage to struc-

tures, equipment, and personnel and poses significant 
hazards in mining operations (Faraji Asl, 2016). The 
blasting pattern is typically designed using empirical 
methods. These methods only consider a limited number 
of parameters, which can lead to less desirable results. 
Through analysis of the results, including fragmentation 
investigation, geometric shape, bench height, displace-
ment, the status of the remaining rock mass, ground vi-
brations, and correction of controllable parameters, it is 
possible to design an appropriate blasting pattern 
(Rashtbar Alouig, 2019). So far, different theoretical 
and empirical models have been proposed to predict the 
blasting pattern in open-pit mines. According to studies, 
these models are not accurate enough, and the reason 
could be the lack of simultaneous consideration of influ-
ential variables. To solve this problem, an appropriate 
option is to use advanced computational methods, such 
as evolutionary algorithms. Prediction and optimization 
of blasting operations using fuzzy methods and me-
taheuristic algorithms can be effective in reducing drill-
ing volume and eliminating the deficiencies of previous 
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methods (Shirani Faradonbeh, 2016). Several studies 
have been conducted to predict the blasting pattern using 
artificial neural networks and optimizing it using various 
approaches. Esfandiar (2018) proposed an optimized 
blasting pattern for the Angoran lead-zinc mine. This 
was achieved by utilizing neuro-fuzzy inference meth-
ods and support vector machines and compared their 
performance in predicting flyrock. The results showed 
that the Support Vector Machine (SVM) outperforms 
neural-fuzzy inference methods in predicting the appro-
priate blasting pattern. Ultimately, by using the cosine 
domain method, sensitivity analysis was performed on 
the parameters, revealing that the specific charge param-
eter and sub-drilling had the highest and lowest impact 
on the blasting pattern. Saghatforoush et al. (2016) de-
veloped an optimal blasting pattern for optimizing fly-
rock and fragmentation rock using a neural network and 
the Ant Colony Optimization (ACO) algorithm. They 
considered 97 blasting operations in the Delkan iron 
mine in Iran and evaluated input data such as burden, 
depth of hole, hole spacing, specific charge, and stem-
ming length. Based on their evaluation, they determined 
that the proposed blasting pattern is the most effective in 
minimizing flyrock distance and optimizing fragmenta-
tion. Koopialipoor et al. (2018) attempted to provide an 
optimal blasting pattern by employing three hybrid intel-
ligence models: genetic algorithm (GA), particle swarm 
optimization (PSO), and imperialist competitive algo-
rithm (ICA). From their findings, the Neural Network 
Prediction Model (ANN-PSO) achieved superior perfor-
mance by selecting the input parameters such as the 
burden-to-spacing ratio, hole diameter, specific charge, 
stemming length, and hole depth. Between these param-
eters, hole diameter was found to be one of the most 
significant input parameters in flyrock. Nguyen et al. 
(2019) proposed a method for predicting blast-induced 
flyrock based on ANN models and their optimization, 
called the EANNs model (a set of ANN models), to pre-
dict flyrock due to blast. They evaluated their proposed 
method using 210 data points from blasting operations. 
The proposed EANN approach outperformed the ANN 
approach with a similar structure and was able to predict 
the flyrock distance effectively. Lu et al. (2020) devel-
oped machine learning algorithms including the extreme 
learning machine (ELM) and outlier robust ELM 
(ORELM) to forecast the distance of flyrock that results 
from blasting. They collected and employed data from 
three granite mines in Malaysia. Their findings revealed 
that the machine learning models had superior perfor-
mance compared to both ANN and multivariate regres-
sion models. Rahimdel et al. (2020) proposed the most 
proper drilling and blasting pattern for Sangan Iron 
Mine, Iran, based on the TOPSIS and PROMETHEE 
methods. Firstly, they used the AHP method in a fuzzy 
environment to calculate the importance of various min-
ing operations features, including backbreak, flyrock, 
specific charge, and specific drilling. Finally, they pro-

posed a drilling pattern with a 5 m spacing, a 4 m bur-
den, a 10 m hole depth, and a 15 cm hole diameter. Ni-
kafshan Rad et al. (2020) presented an optimized blast-
ing pattern for reducing flyrock by utilizing a combination 
of recurrent neural network (RFNN) and genetic algo-
rithm (GA). The mine under study in their research was 
the Shour River Dam mine, and they considered 70 data-
sets from blast field operation, including four input pa-
rameters such as spacing, burden, stemming length, and 
specific charge. Their results showed that the predictive 
model they considered had high accuracy and was sig-
nificantly superior to the nonlinear regression model. 
They identified the specific charge as the influential pa-
rameter on the flyrock resulting from the blast by per-
forming a sensitivity analysis of the input parameters. 
Shakeri et al. (2022) investigated the accuracy of differ-
ent models such as ANN, LMR, ICA, and ANFIS, in 
trying to predict the blast-induced flyrock distance. Their 
results demonstrated that the neural network model, 
which had a low error value and R2 above yielded more 
accurate results compared to the measured data. Further-
more, the ICA imperialist competitive model yielded 
superior outcomes in comparison to the ANFIS model. 
Zangoei et al. (2022) attempted to reduce flyrock in the 
proposed blast pattern using artificial intelligence tech-
niques and employing the Imperialist Competitive Algo-
rithm (ICA). They optimized a three-layer ANN neural 
network and implemented the ICA algorithm to predict 
the flyrock distance accurately with a high R2 value. 
Ding et al. (2023) aimed to develop an accurate model 
for predicting flyrock based on data collected from three 
granite mines located in Malaysia. The study employed 
four methods: the least-squares support vector machine 
(LSSVM), the convolutional forward neural network 
(CFNN), and three optimization algorithms. These were 
the Whale Optimization Algorithm (WOA), the Artifi-
cial Bee Colony (ABC), and the Gravitational Search 
Algorithm (GSA). Their findings demonstrated that all 
proposed models, employing the examined algorithms, 
were able to efficiently predict flyrock. Out of all the 
models, the LSSVM-WOA model outperformed the oth-
ers and provided more accurate predictions of flyrock 
values. Zhang et al. (2024) developed a flyrock predic-
tion model using a stacked multiple kernel support vec-
tor machine (stacked MK-SVM). Their suggested model 
demonstrated superior performance, achieving an RMSE 
of 1.73 and 1.74, MAE of 0.58 and 1.08, and VAF of 
98.95 and 99.25 throughout the training and testing 
phases, respectively.

Based on previous literature reviews and valuable re-
search studies using artificial intelligence and machine 
learning techniques to predict flyrock, several studies 
have developed hybrid models, incorporating meta-heu-
ristic algorithms to enhance the predictive accuracy of 
machine learning models and optimize their perfor-
mance. For instance, the ANN has some limitations, 
such as the slow rate of learning and getting trapped in 
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local minima. Meta-heuristics can fix this problem by 
improving the ANN’s model parameters over and over 
again using a self-defined update scheme. Some studies, 
like Kalaivaani et al. (2020), Murlidhar et al. (2021) 
and Hasanipanah et al. (2022), use particle swarm op-
timization (PSO), the Harris Hawks optimization (HHO) 
and adaptive dynamical harmony search algorithm (HS) 
to develop hybrid ANN models. Given the uncertainty 
surrounding mine blast results, it is impossible to predict 
the explosion’s outcome, such as the resulting flyrock, 
with absolute certainty. Therefore, the use of predictive 
blast models based on metaheuristic algorithms to opti-
mize these predicted models can have an effect on the 
efficiency and optimization of the blast pattern in mines. 
This paper presents a hybrid ICA-ANN predictive mod-
el for flyrock prediction in the Sungun copper mine, 
Iran. The population-based evolutionary algorithm ICA 
draws inspiration from the sociopolitical evolution of 
humans. Engineers have successfully applied this algo-
rithm to various optimization problems. Using ICA, it is 
possible to improve the limitations of the ANN and pro-
vide a hybrid model for predicting flyrock.

2. Materials and Methods

2.1. Case study - Sungun Copper Mine

The Sungun copper mine is located in the East Azer-
baijan Province, Iran, about 73 kilometers northwest of 
Ahar city. Its specific geographical coordinates are 46 
degrees east longitude and 38 degrees north latitude. 
Figure 1 depicts the specific geographical location of 
the mine. This mine, located at an approximate elevation 
of 2390 meters above sea level, is part of the globally 
recognized Alpine-Himalayan copper belt. The main 
minerals it produces are copper and molybdenum. The 
mine has an overall reserve of approximately 796 mil-
lion tons, a proven reserve of about 388 million tons, and 
a copper grade of 0.67%. This mine also extracts valua-
ble metals such as gold and silver, in addition to copper. 
The mining extraction process involves the use of an 
open pit. The working steps have a slope of 63 degrees 
and a height of 12.5 meters. The mine’s overall slope is 
37 degrees. Table 1 presents the geometrical and geo-
logical specifications of the mine.

In the Sungun copper mine, the blast process involved 
bench blasting with a free face using ANFO as the prin-
cipal explosive in the blast holes. The initial blasting op-
eration system used a detonating cord to join the caps. 
The primary blasting pattern took on a triangular shape, 
and the proportion of burden to spacing varied based on 
the attributes of the blast blocks within different seg-
ments of the mine. Flyrock was one of the unwanted 
consequences of the blasting operation in this mine. 
Thus, the present work aimed to predict the flyrock dis-
tance using a metaheuristic algorithm.

2.2. Databases

After collecting the data, the input and output param-
eters were determined. The data on 308 blasts and fly-
rock rates from each blast in the Sungun copper mine 
were recorded and measured in the period from April 
2018 to December 2018. Figure 2 presents the box plots 
of the used data. As can be seen, the initial data related 
to specific drilling (SD), total charge (TC), specific 
charge (SC), and charge per hole (CPH) have outliers 
and should be removed from the database to prevent 
modelling deviation.

The Z-Score statistic was employed to eliminate out-
liers from the data. Z-Score, or standard score, is a statis-
tical metric that quantifies the deviation of a data point 
from the mean of a dataset, measured in standard devia-
tions. It is used to evaluate whether a specific data point 
is normal or an outlier compared to the rest of the data. 
The formula for this evaluation is as follows (Aggarwal 
et al., 2019):
  (1)

Table 1: Geological and geometric characteristics  
of Sungun copper mine

ValueGeological/geometric features
796 million tonsTotal mine reserve
388 million tonsProven reserve

0.67 percentMedium grade
M 12.5Working bench height

68oWorking bench slope
37oMine general slope
30mRamp width
5oRamp slope

About 32 yearsMine age

Figure 1: Sungun copper mine location on map
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where σ shows the standard deviation of the data and μ 
denotes the mean of the data. Data that are more than 3 
standard deviations away from the mean of their respec-
tive column were removed from the data (Aggarwal et 
al., 2019). Ultimately, 205 data series were used in this 
study after removing outliers. The statistical characteris-
tics of the data after removing outliers are presented in 
Table 2.

The data collection is split into two parts: training and 
testing. During the training stage, 80% of the total data 
is used to train the model. The remaining 20% is ran-
domly selected for testing. The prediction of flyrock was 
determined using three evaluation criteria: the root mean 
square error (RMSE), the mean absolute error (MAP), 
and the square of the correlation coefficient (R2). The 
best model is characterized by an RMSE that is near zero 
and an R2 value that approaches one. The following 
equations represent the previously mentioned (Es-
maeilzadeh et al., 2022):

  (2)

  (3)

  (4)

where Xi, meas, and Xi,pred represent the measured and pre-
dicted data, respectively, and N denotes the total number 
of data.

2-3- Artificial Neural Networks (ANNs)

Pitts and McCulloch first presented ANNs in 1943. 
Artificial neural networks (ANNs) are an advanced 
method for precisely analyzing modelling issues, and 
identifying optimal solutions (Guido et al., 2022). Arti-
ficial neural networks are composed of a large number of 
artificial neurons. The number of neurons used in an ar-
tificial neural network depends on the task at hand 
(Nguyen and Bui, 2019). Neurons are commonly ar-
ranged in a layer or vector, where the output of one layer 
serves as the input for the next layer, as well as the next 
one (Zinno et al., 2022). There are different ways to 
connect neurons to each other to form a neural network. 
The feedforward method is one of the most common and 
simplest methods. This type of network earns its name 
as each layer’s neurons transmit their output to the sub-
sequent layer, a process that persists until it reaches the 

Figure 2: Box plot of input parameters
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final output. The accuracy of the output in neural net-
works is highly dependent on the training technique and 
the datasets used for training (Astarita et al., 2023). 
Studies have shown that a neural network with up to two 
hidden layers and sufficient neurons is capable of solv-
ing complicated engineering problems. Experimentation 
typically determines the number of hidden layers and the 
neurons that comprise those layers, depending on the 
complexity of the issue at hand. Opting for a low num-
ber of neurons can lead to the network losing its capacity 
for generalization and struggling to approximate com-
plex mappings. Conversely, employing too many neu-
rons results in an increase in the network’s adjustable 
elements, widening the statistical population for training 
and weight balancing (Monjezi et al., 2006). Figure 3 
illustrates the overall architecture of an artificial neural 
network. Artificial neural networks function by assign-
ing an arbitrary weight to each input variable within the 
range of 0 to 1. Then this weight is multiplied by the in-
put value, and the sum of these values reaches the neu-

rons located in the hidden layer with a value called bias, 
which is in fact the weight of the neuron, and usually its 
value is equal to one; it is added, and a transfer function 
acts on it in the neuron (step, linear, or sigmoid). Weight 
is assigned to this value again and it is transferred to the 
next neuron in the next hidden layer or output layer. In 
this way, the values obtained from all the neurons of the 
hidden layer are added and the training stage is com-
pleted. The obtained output values are compared with 
the actual measured values, and from their difference, 
the mean square error is calculated. This error is adjust-
ed with a post-propagation algorithm in the return path. 
Modifying the weight values initiates a new training 
phase. This process is repeated until the network stop 
criteria (the number of training steps) is defined or is 
satisfied by the desired error rate. In this way, the net-
work is trained and tested with other data whose output 
is not given to the network. By comparing the results 
obtained from the network and the actual measured re-
sults, the network performance is measured.

Table 2: Modified input parameters, output, and their statistical characteristics

Standard deviationMeanMinimumMaximumNumberSymbolUnitType of parameterParameters
10.8429.84361205NLoopInputNumber of holes
0.845.5246205SmInputSpacing
0.844.5233205BmInputBurden
0.010.040.020.08205SDm3InputSpecific drilling
137532252707000205TCKgInputTotal charge

15.75038.540203.19875.45205SCKg/m3InputSpecific charge
1.6014.6910.7123.34205CPHKgInputCharge per hole

18.2818.2840140205FRmOutputFlyrock

Figure 3: The basic framework of the ANN
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2.4.  Imperialist competitive metaheuristic 
algorithm (ICA)

Lucas and Atashpaz presented the ACI in 2007, draw-
ing inspiration from socio-political processes (Atash-
paz-Gargari and Lucas, 2007). The high speed of con-
vergence and greater ability to search for optimization 
are the advantages of this method (Shakeri et al., 2022). 
According to Figure 4, which illustrates the algorithm’s 
process, the initial stage is the initial determination of 
empires (including countries) as a random population 
(Alzoubi et al., 2017). In the following, some powerful 
cities are considered imperialists, and the rest are colo-
nies, according to the function of cost in the generated 

population. Each imperial power distributes colonies 
among itself based on its prowess. Following the trans-
fer of colonies to their respective imperialist nations, 
these empires enter a competitive phase. As a result, the 
dominant empires annex their colonies, ousting the 
weaker ones. In this competition between imperialist 
governments trying to integrate newcomers and revolu-
tionary events (sudden changes in the positions of some 
countries), the colonies’ influence grows, changing the 
way empires and their colonies interact with each other. 
This cycle concludes when only one empire remains, 
leading to the collapse of all weaker empires (Shakeri et 
al., 2022).

3.  Development of flyrock distance 
prediction models

3.1. Preparation of optimal neural network model

In order to achieve a highly efficient network, the ran-
dom research optimizer algorithms and the optimal and 
combined hyperparameters of different hidden layers 
and neuron numbers were tested. Ultimately, a neural 
network consisting of two hidden layers, each contain-
ing five neurons and utilizing sigmoid transfer functions, 
was identified as the most optimal network. The study's 
assessment errors, derived from equations (2) to (4) and 
compared against measurement values, serve as the pri-
mary consideration for determining the optimal neural 
network. This paper used MatLab software to predict 
flyrock distance using both prediction models. Table 3 
presents the specifications of the best network.

Figure 5 shows the predicted values in the superior 
neural network model against the measurement data for 
the training and testing phases. The selected neural net-
work demonstrates a high ability to predict the measured 
values. The ANN-MLP model demonstrated superior 
results with an R2 value of 0.86, MAE value of 4.84 m, 
and RMSE value of 6.61 m during the training phase. It 
achieved an R2 value of 0.81, a MAE value of 9.31 m, 
and an RMSE value of 7.10 m during the testing phase.

Figure 6 presents a comparison between the predict-
ed values and the measured values obtained from the 
flyrock distance resulting from the superior neural net-
work model (ANN-MLP) for the testing phase. It is evi-
dent that the neural network outperforms the measured 
values in predicting the flyrock distance.

One of the basic evaluations after modelling is to de-
termine the sensitivity of the flyrock distance as an out-
put function to the input parameters. To ascertain the 
influence degrees of input parameters on the flyrock, the 
relevancy factor (RF) is analysed (Mehrdanesh et al., 
2018). A notable variance between the model’s estimat-
ed values and the measured values suggests a heightened 
influence of the omitted parameter on the outcomes 
(Oakley and O’Hagan, 2004). The RF values can be 
calculated by:Figure 4: Flowchart of the ICA
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  (5)

Here, pl,i and pl are the ith value and the average value 
of the lth

 input variable, respectively, MMPi and MMP 
are the ith value and the average value of the predicted 

output, respectively. Figure 7 shows the effectiveness of 
the input parameters on the objective function (flyrock 
distance). It is observed that the specific charge (SC), the 
total charge (TC), and the number of holes (N) have the 
greatest impact on the flyrock (FR) with 17.41%, 
16.51%, and 16.26% respectively. This result is consist-
ent with previous research conducted by various re-
searchers such as Armaghani et al. (2014), and Yari et 
al. (2023). Also, the space (S) has the lowest sensitivity 
of 11.45% on the flyrock distance (Yari et al., 2023). 
This suggests that attention to the specific charge, total 

Table 3: The optimal values of ANN parameters for generation flyrock

R2MAE (m)RMSE 
(m)

Data 
classificationIterationsNumber of neurons 

per layer
Number of 

hidden layersOptimal model

0.817.109.3120100052ANN-MLP

Figure 5: Correlation between measured and predicted 
values of flyrock distance obtained from ANN-MLP, a: 

Training phase b: Testing phase.

Figure 6: Measured flyrock vs. predicted flyrock by  
ANN-MLP model for testing phase

Figure 7: Sensitivity analysis of input parameters on flyrock 
distance

Table 4: Control parameters of imperialistic competition algorithm

Control values #4Control values #3Control values #2Control values #1Variable name
25201520Number of populations
21.521.5Assimilation coefficient

25201510Imperialistic competition
0.10.20.20.1Revolution rate

1000100010001000Iterations
0.820.840.860.89The R2 value of the testing phase
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Figure 8: Correlation between measured and predicted 
values of flyrock distance obtained from ICA-ANN, a: 

Training phase b: Testing phase.

Figure 9: Taylor diagram for assessing the accuracy of the models, a: Training phase b: Testing phase.

charge, and number of holes is essential for having an 
efficient explosion pattern in the studied mine.

3.2.  Optimization with the meta-heuristic 
algorithm of imperialistic competition

The imperialistic competition optimization algorithm 
has been employed to enhance the efficiency of the neu-
ral network. This algorithm requires an objective func-
tion. A neural network has been used to determine the 
objective function. In fact, the neural network is respon-
sible for simulating the objective function. The imperial-
istic competition algorithm’s main foundations are 
 assimilation policy, imperialistic competition, and revo-
lution. Therefore, it’s crucial to determine the hyperpa-
rameter values of the imperialistic competition algo-
rithm through its implementation and the application of 
the trial-and-error method. After doing numerous itera-
tions, the algorithm yielded the values of the control pa-
rameters, as shown in Table 4. To get the best results 
from ANN trained by ICA, it is critical to find the opti-
mum network architecture. ICA can only adjust an 
ANN’s weights and biases to minimize learning error 
and cannot determine the optimal network architecture. 
Therefore, the superior neural network obtained from 
the previous section was chosen as the objective func-
tion for ICA.

Figure 8 displays the graphs comparing the predicted 
flyrock using the hybrid neural network-competition im-
perialistic (ICA-ANN) technique to the measured fly-
rock for both the training and testing datasets. The hy-
brid models of ANN have shown an increase in the R2 
value and a reduction in the RMSE and MAE errors, 
resulting in values of 5.36 m, 4.37 m, and 0.92 for the 
training phase and 5.66 m, 4.60 m, and 0.89 for the test-
ing phase, respectively.

Figure 9 displays the Taylor diagram, which com-
pares the measured and predicted data during the testing 
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Table 5: Comparison of some of the values predicted by the hybrid model prediction versus measured data  
in the testing phase

Flyrock distance, 
ICA-ANN (m)

Flyrock distance, 
ANN-MLP (m)

Flyrock distance, 
measured (m)

TC 
(kg)

SD 
(m/m3)NB (m)Blast pattern

59.7154.096044000.0323251
49.9966.855020000.0591932
69.6177.608032000.0394953
93.2976.2310030000.0342034
73.4186./928050000.0623335
72.7066.837015800.0391236
62.4556.936024000.0332557
44.5650.184022700.0312858
68.4660.387020100.0641839
55.9552.435017300.03116510
52.2454.794027500.02845511
75.0783.107051000.03044512
72.8474.857045300.02736513
53.3950.925030000.03027514

6468.846034800./03125515
62.2370.846035000.02841516
63.9854.216021600.07323317

108.2491.9412021000.05414318
93.7785.2510033900.03427519
60.8658.066050000.03141520
64.9854.216016000.02712521
67.7066.4567.14Mean

and training phases, offering a comprehensive evalua-
tion of all the models under study. The Taylor diagram 
incorporates three evaluation metrics: root mean square 
error, standard deviation, and correlation coefficient. 
These metrics measure the concordance between predic-
tions and measurements The x-axis and y-axis of this 
diagram illustrate the standard deviation; the arcs depict 
RMSE values. The closer a model’s prediction results to 
the experimental results (reference), the higher its accu-
racy and efficiency. As per the Taylor diagram, the hy-
brid neural network model with ICA-ANN exhibits su-
perior performance compared to ANN-MLP in both 
training and testing phases.

Table 5 provides some of the data used to compare 
the two models in flyrock prediction. The hybrid imperi-
alistic neural-competition model (ICA-ANN) predicts 
flyrock values that are closer to the measured flyrock 
distance data than ANN-MLP.

4. Conclusions

Blasting is the prevailing approach to rock fragmenta-
tion in the mining industry. The process of blasting gen-
erates flyrock, which is a significant and challenging 
activity that requires careful evaluation in order to mini-
mize the associated risks. Empirical methods and rela-

tionships for predicting flyrock when using some input 
parameters and affecting it, have a performance with a 
high error. As a result, modern soft computing methods, 
such as meta-heuristic algorithms, can be useful in ac-
curately and efficiently predicting the flyrock distance. 
This study aimed to develop neural network predictive 
models to predict the flyrock distance using the ANN-
MLP and imperialist competitive algorithm (ICA). After 
testing different neural network models, the superior p 
neural network was selected with RMSE, MAE, and R2 
error values of 9.31 m, 7.10 m, and 0.81, respectively. 
Therefore, the selected ANN-MLP model utilized a 
combination of the imperialistic competition algorithm 
(ICA-ANN). By performing different iterations and se-
lecting the appropriate hyperparameters for the ICA with 
a population of 20, an assimilation coefficient of 1.5, an 
imperialist competition of 10, and a revolution rate of 
0.1, the neural network model was finally optimized, and 
the hybrid neural-imperialist competitive model with 
high capability predicted the flyrock distance with 
RMSE, MAE, and R2 values of 5.66 meters, 4.60 meters, 
and 0.89, respectively, in the testing phase. It was deter-
mined by performing a sensitivity analysis on the pa-
rameters affecting the flyrock distance that the amount 
of total charge (TC) used and the number of holes (N) 
have the greatest impact with 17.36% and 16.26%, re-
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spectively, and spacing (S) with 11.45% has the least 
impact during flyrock (FR) caused by blast patterns. 
Considering the high accuracy of the suggested devel-
oped model in predicting flyrock in mining operations, 
studying the proposed prediction model on ground vi-
bration and air blast and employing other meta-heuristic 
optimization algorithms to find the best prediction mod-
el and replace these methods with the field methods 
could be recommended for future studies.
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SAŽETAK

Predviđanje udaljenosti odbacivanja minirane stijenske mase korištenjem  
algoritma imperijalističke konkurencije (studija slučaja: rudnik bakra Sungun)

U ovome istraživanju provedena je studija koja procjenjuje udaljenosti odbacivanja minirane stijenske mase, a to je ne-
poželjna pojava u okolišu površinskih kopova. Iako postoje dostupne eksperimentalne metode za predviđanje udaljeno-
sti odbacivanja minirane stijenske mase, njihova je učinkovitost smanjena zbog složenosti procesa procjene. Ova studija 
koristi se metodama umjetne inteligencije i statističke tehnike za predviđanje udaljenosti odbacivanja minirane stijenske 
mase u rudniku bakra Sungun. Stoga se umjetna neuronska mreža (ANN-MLP) i novi hibridni model umjetne neuron-
ske mreže (ANN) optimiziran algoritmom imperijalističke konkurencije (ICA), poznatim kao (ICA-ANN), koriste za 
predviđanje udaljenosti odbacivanja minirane stijenske mase uzimajući u obzir ključne parametre kao što su broj bušo-
tina, razmak između bušotina, izbojnica, ukupna količina eksploziva, specifičnosti bušenja, eksplozivno punjenje po 
bušotini i specifična potrošnja eksploziva. Rezultati su pokazali da je umjetna neuronska mreža, s RMSE od 9,31 m, MAE 
od 7,10 m i R2 od 0,81, bila u stanju dobro predvidjeti duljinu odbacivanja u usporedbi s izmjerenim podatcima u ispitnoj 
fazi. Međutim, implementacija algoritma imperijalističke konkurencije u neuronskoj mreži poboljšala je predviđanje 
udaljenosti odbacivanja, uz vrijednosti RMSE od 5,66 m, MAE od 4,60 m i R2 od 0,89. Analizom osjetljivosti na ulazne 
parametre duljine odbacivanja utvrđeno je da količina utroška eksploziva i broj bušotina imaju najveći utjecaj na udalje-
nost odbacivanja minirane stijenske mase.

Ključne riječi: 
udaljenost odbacivanja minirane stijenske mase, miniranje, umjetna neuronska mreža, algoritam imperijalističke kon-
kurencije, rudnik bakra Sungun
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