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Abstract
Due to the time-consuming procedure for determining the 5-day biochemical oxygen demand (BOD5), the present study 
developed two software sensors based on artifi cial intelligence techniques. It is aimed to estimate this indicator instan-
taneously. For this purpose, feed-forward and radial basis function neural networks (FFANN and RBFANN, respectively) 
were used. FFANN and RBFANN were employed to estimate the maximum values of BOD5 (BOD5(max)) as a function of 
average, maximum and minimum dissolved oxygen in the Sefi drood River. Also, Levenberg-Marquardt (LM), resilient 
backpropagation, and scaled conjugate gradient algorithms were used to optimize the FFANN parameters. The results 
demonstrated that the performance of the LM algorithm in tuning the FFANN was better than the others, in the verifi ca-
tion step. Furthermore, the performance of each model was evaluated according to the mean square error, correlation 
coeffi  cient and developed discrepancy ratio. The results showed that the performance of both FFANN and RBFANN 
models for the prediction of the BOD5(max) were approximately the same.
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1. Introduction

Rivers are one of the main sources of water supply for 
diverse uses including industry, drinking, recreation and 
agriculture (Fan et al., 2008). Due to the discharge of 
municipal-industrial wastewaters and agricultural drain-
ages into rivers, evaluating the quality of these valuable 
water bodies is essential. In this direction, predicting the 
water quality parameters (WQP) such as the 5-day bio-
chemical oxygen demand (BOD5), as an indicator of or-
ganic load, can provide the proper framework for man-
agers to improve the water quality in the rivers.

Numerical and data-driven models are usually used 
for the simulation of WQP based on the existing facili-
ties as well as the user’s needs. Numerical models have 
always been a useful tool for the simulation of WQP and 
were used especially for the simulation of BOD5. Ning 
et al. (2001) discussed pollution prevention actions in 
the river Kao-Ping in Taiwan. They used QUAL2E, a 
steady state one-dimensional model that applies a fi nite 
difference scheme for solving the governing equations 
on pollutants’ transport in rivers. Subsequently, simula-
tion of BOD5, dissolved oxygen (DO) and total phos-
phorous (TP) was carried out by Ning et al. (2001). 

Simulated results indicated that using economic instru-
ments is required to reduce and control the pollution 
load of BOD5 in the river. Park and Lee (2002) com-
pared the performance of two models QUAL2E and 
QUAL2K (a developed version of QUAL2E that in-
cludes some advantages such as the conversion of algae 
death to BOD5 and denitrifi cation) for the simulation of 
BOD5 in the Nakdong River, Korea. The researchers 
concluded that the QUAL2K performance was better 
than the QUAL2E. Fan et al. (2008) combined two 
models QUAL2K and HEC-RAS (a software developed 
by the U.S. Army Corps of Engineers) to assess WQP in 
the Keelung River, Taiwan. They used QUAL2K for the 
simulation of BOD5. HEC-RAS was used for simulating 
the hydraulic constants of atmospheric reaeration and 
water level profi le variations. The results showed that 
the combination of two models provides a good tool for 
water quality simulation in tidal rivers. Sharma et al. 
(2015) modelled BOD5 using QUAL2Kw (a developed 
version of QUAL2K that uses the genetic algorithm for 
automatic calibration) and reported that the model per-
formance was satisfactory.

It should be pointed out that data-driven models are 
more fl exible than numerical ones. Also, due to the prop-
er performance of a set of these models called intelligent 
techniques, their application for BOD5 prediction has in-
creased in recent years. Chaves and Chang (2006) used 
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a feed-forward artifi cial neural network (FFANN) to 
simulate WQP in the Shihmen Reservoir located on the 
Tahan River in Taiwan. For this purpose, they used the 
water quality data for 47 days at fi ve points in three dif-
ferent depths. Hydro-meteorological data and WQP 
were defi ned as input and outputs, respectively. They 
concluded that FFANN was well capable of predicting 
WQP. Dogan et al. (2007) applied FFANN to estimate 
the BOD5 concentration in the Melen-River, Turkey. In-
puts (including chemical oxygen demand (COD), tem-
perature, DO, water fl ow, chlorophyll-a, ammonia, ni-
trite and nitrate) were measured at 11 sites in the Melen-
River during 2001-2002. A comparison of the modelled 
values with the measured ones showed that the FFANN 
model performed well for the BOD5 prediction with a 
correlation coeffi cient (R) equal to 0.93. Singh et al. 
(2009) applied the FFANN model to predict BOD5 and 
DO in the Gomti River, India. The results revealed that 
the predicted and measured DO and BOD5 were in close 
agreement. The values of R (in case of BOD5) for cali-
bration and verifi cation steps were 0.92 and 0.88, re-
spectively.

The relation between BOD5 and DO is rather com-
plex. In other words, many other parameters such as 
toxic substances and algae respiration could greatly in-
fl uence the relationship between BOD5 and DO. Thus, it 
is diffi cult to use simple data-driven models such as lin-
ear regression to construct a software-sensor for BOD5 
prediction. In the present investigation, two software 
sensors were applied by ANN models to predict BOD5 
as a function of DO in the Sefi drood River. Due to the 
little attention to the simulation of BOD5 with radial ba-
sis function neural network (RBFANN), FFANN was 
also used to simulate the maximum value of BOD5 
(BOD5(max)) in the Sefi drood River. Also, this research 
aimed to compare the performance of FFANN and RB-
FANN models for BOD5 prediction.

2. Methods and materials

2.1. Case study and data

For the in-situ measurement of BOD5 with the aid of 
FFANN and RBFANN models, the Sefi drood River Ba-
sin, located in the northwest of Iran, was selected. The 
river basin covers an area of 59196 square kilometres, 
located between the Alborz and the Zagros Mountains. 
Pollution sources in the Sefi drood River Basin are urban, 
agricultural and industrial (Noori et al., 2013a and 
2015). A fi eld study along the river was performed to 
detect appropriate sampling stations. Firstly, 94 moni-
toring stations were selected in such a way to cover the 
whole length of the river and its tributaries (see Figure 
1). Then, sampling was carried out for each season 
throughout a one year period. Dissolved oxygen (DO) 
was measured in-situ. BOD5 samples were carried to the 
laboratory and analysed within 24 hours after collection 

(APHA, 1995). Thereafter, the data was checked for 
outliers.

One needs fi ve days to determine BOD5 using con-
ventional methods whereas in-situ measurement of this 
parameter would be very signifi cant for water quality 
managers. Therefore, this study aimed to apply a soft-
ware-sensor for in-situ measurement of BOD5(max) as a 
function of WQP such as DO. To achieve this goal, the 
minimum, average and maximum values of DO, (DOmin, 
DOavg and DOmax) measured online in four seasons, were 
used as suggested by Noori et al. (2012). Figure 2 
shows the correlation matrix between DO parameters 
and BOD5(max).

Generally, Figure 2 indicates a weak correlation be-
tween DO and BOD5(max). This can be justifi ed by many 
factors such as discharge of industrial effl uents without 
proper treatment that cause a negative infl uence on mi-
crobial activates (Noori et al., 2013b). In other words, 
the presence of toxic substances, along with algae respi-
ration due to the eutrophic status in some parts of the 
river can infl uence microbial activities to various de-
grees. Based on Figure 2, the largest value of the coef-
fi cient of determination (R2) is between DOmax and 
BOD5(max) and the smallest one is between DOmin and 
BOD5(max). Considering this correlation matrix, it is not 
possible to predict BOD5(max) based on DO because there 
is no linear relation between the two variables whereas it 
is clear that a complicated relation exists between them. 
Therefore, it is diffi cult to provide a software-sensor for 
modelling BOD5 as a function of DO by using simple 
data-driven models such as linear regression. So, it is 
necessary to use a strong tool such as ANN.

Figure 3 shows the applied methodology in this re-
search for developing a software-sensor based on 
FFANN and RBFANN models step-by-step to predict 
BOD5(max) in the Sefi drood River. According to this fi g-
ure, after the collection of data, inputs (DOmin, DOavg and 
DOmax) and target (BOD5(max)) were imported to MAT-
LAB software for the application of FFANN and RB-
FANN models. The data entered to MATLAB were 
standardized to be limited in the range [-1, +1]. Then, 

Figure 1: The Sefi drood River Basin and sampling points
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data was divided into three groups (train, validation, and 
verifi cation). Subsequently, the two models (FFANN 
and RBFANN) were set and the modelled BOD5(max) val-

Figure 2: The correlation matrix between DO and BOD5(max) parameters

Figure 3: Applied methodology in this research 
for developing a software-sensor based on FFANN 

and RBFANN models step-by-step to predict BOD5(max) 
in the Sefi drood River

ues were compared with measured ones. Finally, the per-
formance of each model was evaluated by the mean 
square error (MSE), R and developed discrepancy ratio 
(DDR).

2.2. Feed-forward artifi cial neural network

The FFANN is comparable to the natural nervous sys-
tem. It has neurons as processing elements and links 
which represent the connections among the neurons 
(Dogan et al., 2007). Every link has a weight parameter 
associated with itself (Maier and Dandy, 2000). The 
neurons are located in layers and each layer has a spe-
cifi c transfer function. FFANN consists of an input-lay-
er, an output-layer, and several hidden layers, but one 
hidden-layer is enough to estimate each complex param-
eter (Noori et al., 2010b; Singh and Gupta, 2014). Fig-
ure 4 shows an applied FFANN model in which DOmin, 
DOavg and DOmax are as inputs and BOD5(max) is the target. 
ANN was applied to the data set collected from 94 sam-
ple points. The inputs were standardized to be limited in 
a range between -1 and 1 (Basant et al., 2010) and were 
divided into three categories: training, validation and 
verifi cation. The laboratory data set from the fi rst to 65th 

station, 66th to 80th station, and 81st to the 94th were se-
lected as training, validation, and verifi cation sets, re-
spectively. Also, to optimize the network weights, Lev-
enberg-Marquardt (LM), scaled conjugate gradient 
(SCG) and resilient backpropagation (RP), training 
functions were used. LM and SCG have a good effi cacy 
and RP training function has a high speed in training 
procedure. Therefore, these functions have been utilized 
in the present research. The SCG, against the LM algo-
rithm, avoids the time-consuming calculation of the 
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Hessian matrix in the modelling process. It is the main 
advantage of this algorithm. Also, SCG merges between 
two approaches: the model-trust region and the conju-
gate gradient (CG). More information on SCG, LM and 
RP algorithms can be found in Noori et al. (2009a; 
2010a; 2010b).

The backpropagation algorithm is used for training 
the perceptron network. This supervised learning algo-
rithm is carried out through backpropagation, a generali-
zation of the least mean squares algorithm in the linear 
perceptron (Singh et al., 2009). The error (e) in output-
node j in the nth data point can be calculated by Equa-
tion 1 as follows:

  (1)

where:
t – the target values,
y – the output values.
The weights of the nodes are based on the corrections 

which minimize the error in the entire output, given by 
Equation 2.

  (2)

Using gradient descent (GD), the change in each 
weight (∆w) is written by Equation 3

  (3)

where:
 – the output of the previous neuron,
σ – the learning rate.
The calculation of derivative counts on the induced 

local fi eld γj. For an output-node, the derivative is calcu-
lated as Equation 4.

  (4)

where:
 – the derivative of the transfer function.

The analysis is more diffi cult for the change in weights 
to a hidden-node, but it is shown as Equation 5.

  (5)

This counts on the change in weights of the kth nodes, 
which represents the output-layer.

The linear and sigmoidal transfer functions are very 
popular in the application of ANN models. In some in-
vestigations, a sigmoidal transfer function was used in 
place of a linear function in the output-layer of FFANN 
(Nilsson et al., 2006; Sahoo and Ray, 2006). This can 
limit the outputs of FFANN to a small range (Haykin, 
1994). In the present study, for the FFANN model with 
one hidden-layer, the transfer functions of the hidden-
layer and output-layer were selected as tangent-sigmoid 
and linear functions. To achieve the best architecture, the 
number of the hidden-layer neurons was identifi ed using 
the trial-error procedure.

2.3.  Radial basis function artifi cial 
neural network

The RBFANN was fi rstly introduced by Lowe and 
Broomhead (1988) for the application to problems of su-
pervised learning (Orr, 1996). This network has a faster 
learning process in comparison to other neural networks 
(Han et al., 2012). The basic RBFANN structure con-
tains three layers (input, output and hidden layers). The 
hidden-layer functions transfer the nonlinear input-space 
to the linear hidden-space (Liu et al., 2004; Singh et al., 
2013). In this study, to construct a software-sensor for 
the online prediction of BOD5 (max) using a RBFANN 
model, input vectors DOmin, DOavg and DOmax were se-
lected (see Figure 5).

A basic RBFANN with one output and k hidden-layer 
nodes is represented by Equation 6

Figure 4: The applied three-layer FFANN in this study

Figure 5: The structure of RBFANN in this study
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  (6)

where:
x – the input of RBFANN,

 – the connecting weights between kth hidden-node 
and the output-layer,

 – the output-value of the kth hidden-node which 
usually based on Gaussian function as Equation 7.

  (7)

where:
 – the centre vector of the kth hidden-node,

 – the Euclidean distance between x and ,
 – the width of the kth hidden-node.

The RBFANN training process involves determining 
the centre vectors of the nodes in the hidden-layer, the 
width of the hidden-layer nodes, and the connecting 
weights between the two layers (hidden and output 
 layers).

The RBFANN, compared to the FFANN, needs more 
neurons but its design and training process are faster. In 
this research, the newrb function was used in the MAT-
LAB environment to design and tune the RBFANN 
model for BOD5(max) estimation. This function creates a 
RBFANN that includes one neuron the fi rst time. Neu-
rons are added to the network until the sum of the 
squared error reaches the error goal or the number of the 
hidden-layer neurons reaches the maximum number 
(Demuth and Beale, 2004).

2.4. Models’ evaluation

To estimate the performance of FFANN and RB-
FANN models, three statistical indices; R, MSE, and 
DDR were used. R denotes the strength and the direction 
of a linear relationship between the measured and pre-
dicted values. R values range from -1 to +1. The (+) and 
(-) signs are used for positive and negative linear corre-
lation, respectively. If the observed and predicted values 
have a strong positive linear correlation, R is close to +1. 
When the correlation is greater than 0.8, it means that 
there is a strong fi t between the observed and predicted 
values. R can be represented by Equation 8.

  (8)

where:
f – modelled values,
p – observed values,
n– the number of values.
In statistics, MSE estimates the quality of a model for 

predicting values. MSE values close to zero are better. It 
is calculated by Equation 9 (Dogan et al., 2016)

  (9)

In addition, the DDR statistic that introduces a graph-
ical view for the models’ performance is calculated as 
shown in Equation 10.

  (10)

DDR values must be standardized and then, the nor-
malized value of DDR (QDDR) is calculated using the 
Gaussian function. Finally, QDDR via standardized DDR 
values must be illustrated. In the obtained fi gure, more 
tendencies to the centre line and also, a bigger value of 
the maximum QDDR indicates more accuracy. More in-
formation on DDR can be found in Noori et al. (2010a).

3. Results and discussion

3.1.  Results of feed-forward artifi cial neural 
network

In this study, the unknown network parameters, i.e. 
weights and biases, were optimized in the model using 
LM, SCG, and RP algorithms, respectively. The results 
revealed that the best FFANN performance was achieved 
by the application of 20 neurons in the hidden-layer of 
the network. The results for the application of each train-
ing algorithm based on statistical characteristics, i.e. 
MSE and R, have been shown in Table 1.

Table 1: Calibration-verifi cation results for FFANN 
and RBFANN

Model Optimizing 
algorithm

Calibration Verifi cation
MSE R MSE R

FFANN
LM 0.035 0.89 0.040 0.89
RP 0.065 0.78 0.057 0.85

SCG 0.064 0.81 0.054 0.82
RBF GD 0.041 0.87 0.039 0.90

Based on Table 1, it is observed that the tuned model 
by LM algorithm includes more desirable R and MSE 
values during both the calibration (training and valida-
tion) and verifi cation steps. Therefore, it can be noticed 
that LM performance is better than SCG and RP algo-
rithms. Besides, Figure 6 shows a scatter diagram of the 
predicted BOD5(max) vs measured ones during both cali-
bration-verifi cation steps. The results of the predicted 
BOD5(max) vs the measured ones and also an error dia-
gram for the FFANN model in each station can be seen 
in Figure 7. This fi gure shows that the FFANN model 
tuned by the LM algorithm worked well during both the 
calibration-verifi cation steps. However, the error dia-
gram illustrates that the FFANN model in some stations 
was faced with high error values that infl uence the ap-
plication of this model as a management tool for BOD5 
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monitoring in the Sefi drood River. In Figure 7, the two 
red lines indicate the range of acceptable error which is 
less than 10%. This fi gure shows that the error for ap-
proximately 25% of the points for FFANN model is out 
of this range.

3.2.  Results of radial basis function artifi cial 
neural network

In RBFANN the width of the hidden nodes was opti-
mized through trial and error. The maximum number of 

the hidden-layer neurons was selected with considera-
tion of the inputs. Finally, the width value and the maxi-
mum hidden-layer’s neurons were considered within 
ranges 0 to 4 and 5 to 30, respectively. The RBFANN 
weights were updated depending on the GD approach. 
The obtained results by the trial and error procedure 
specifi ed that the best RBFANN performance was in the 
application of 20 neurons in the hidden-layer of the net-
work and considering the width of the hidden nodes 
equal to 2. MSE and R indices for the calibration-veri-
fi cation steps of RBFANN model have been shown 

Figure 7: The predicted BOD5(max) vs measured ones and the error diagrams for FFANN 
and RBFANN models in stations

Figure 6: Scatter diagrams of the predicted BOD5(max) by FFANN and RBFANN models vs observed 
ones for calibration-verifi cation steps
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in Table 1. This table shows that the tuned model by 
RBFANN includes proper R and MSE values during the 
calibration-verifi cation steps. Also, the scatter and trend 
diagrams of the predicted BOD5(max) vs measured ones 
for RBFANN model have been shown in Figure 6. 
Moreover, the error diagram (see Figure 7) clearly 
shows the poor performance of the RBFANN model in 
some points so that the error of 23% of the points is more 
than 10%.

However, a visual inspection of the results indicates 
that the tuned models by RBFANN and FFANN have 
approximately the same performance. To have a better 
evaluation regarding the performance of FFANN and 
RBFANN models, the QDDR via standardized DDR val-
ues for FFANN and RBFNN in the verifi cation step have 
been shown in Figure 8. Based on this fi gure, the ten-
dency to the centre line in RBFANN is as same as that in 
FFANN model. Besides, the maximum of QDDR for the 
both models is close to 0.4. Therefore, the DDR analysis 
reveals that the performance of RBFANN is practically 
same as the FFANN model.

However, in comparison with previous studies, it can 
be found that the applied FFANN and RBFANN models 
in this research have a good performance for BOD5(max) 
prediction. Regarding the FFANN model, Onkal-Engin 
et al. (2005) tuned a FFANN model with R equal to 0.93 
for the prediction of BOD5. Singh et al. (2009) calibrat-
ed different FFANN models to predict BOD5. They re-
ported that the models had a good performance with R 
ranged from 0.70 to 0.85 between the measured and the 
modelled BOD5. Also, the R value for the presented 
FFANN model by Dogan et al. (2007) was 0.93. In an-
other work, Noori et al. (2013) tuned a FFANN model 
with R equal to 0.94 for the prediction of BOD5. Noted 
although there are some studies that aimed to predict 
BOD5 using FFANN, an application of the RBFANN 
model, which in this case, is rare. Thus, this study aimed 
to investigate the RBFANN performance for BOD5 pre-
diction in rivers. Also, artifi cial intelligence techniques 
such as FFANN and RBFANN models are sensitive to 
the case study and selection of inputs. So the models’ 
performance is highly infl uenced by the selected inputs. 

In this regard, this study aimed to tune a model whereas 
faced with some fi nancial constraints. Therefore, only 
the main effective parameter on BOD5 variations, i.e. 
DO was measured and other effective parameters such 
as nutrients, industrial effl uents and fl ow discharge were 
ignored. By considering the facts, the obtained results 
are acceptable and could be applied to understanding the 
pollution trends in the Sefi drood River.

4. Conclusions

This study aimed to estimate the BOD5(max) as a func-
tion of DOmin, DOavg and DOmax in the Sefi drood River 
Basin, Iran, using FFANN and RBFANN models. The 
performance of the tuned models was assessed through 
R, MSE, and DDR indices. Calibration-verifi cation 
 results specifi ed that FFANN and RBFANN models 
worked well and predicted BOD5(max) with R values close 
to 0.89 and 0.90 in the verifi cation step, respectively. For 
FFANN, it was observed that the tuned model by the LM 
algorithm resulted in more desirable R and MSE values. 
In addition, R and MSE values for RBFANN and FFANN 
models were approximately acceptable. According to 
DDR analysis, the results demonstrated that the perfor-
mance of both models was approximately the same and 
the maximum values of QDDR were practically the same 
for both networks. However, because of insuffi cient data 
about some effective parameters on BOD5 such as algae 
respiration and toxic substances, both the tuned models 
did not have excellent performance in some stations. 
Therefore, it is recommended that the models are again 
tuned using more data if the decision makers aim to ap-
ply the results for management of water quality in the 
Sefi drood River.

5. References

APHA (American Public Health Association) (1995): Stand-
ard Methods for the Examination of Water and Wastewa-
ter. (19th ed.), Washington.

Basant, N., Gupta, S., Malik, A. and Singh, K.P. (2010): Lin-
ear and nonlinear modelling for simultaneous prediction of 
dissolved oxygen and biochemical oxygen demand of the 
surface water—a case study. Chemometrics And Intelli-
gent Laboratory Systems, 104, 172-180. DOI: 10.1016/j.
chemolab.2010.08.005.

Chavez, P. and Chang, F.J. (2006): Simulation of Multiple Wa-
ter Quality Parameters Using Artifi cial Neural Networks. 
7th International Conference on Hydro information, Nice, 
France.

Demuth, H.B. and Beale, M.H. (2004): Neural network tool-
box for use with MATLAB: User guide. Math Works.

Dogan, E., Kocamaz, U.E., Utkucu, M. and Yıldırım, E. 
(2016): Modelling daily water level fl uctuations of Lake 
Van (Eastern Turkey) using Artifi cial Neural Networks. 
Fundamental And Applied Nematology, 187, 177-189.

Dogan, E., Koklu, R. and Sengorur, B. (2007): Estimation of 
Biological Oxygen Demand Using Artifi cial Neural Net-
work. International Earthquake Symposium, Kocaeli.

Figure 8: QDDR via standardized DDR values for FFANN 
and RBFNN in testing step



Kasem, R.; ALabdeh, D.; Noori, R.; Karbassi, A. 22

The Mining-Geology-Petroleum Engineering Bulletin and the authors ©, 2018, pp. 15-23, DOI: 10.1177/rgn.2018.1.3

Dogan, E., Yuksel, I. and Kişi, O. (2007): Estimation of total 
sediment load concentration obtained by experimental study 
using artifi cial neural networks. Environmental Fluid Me-
chanics, 7, 271-288, DOI: 10.1007/s10652-007-9025-8.

Fan, C., Ko, C.H. and Wang, W.S. (2008): An innovative mod-
eling approach using Qual2K and HEC-RAS integration to 
assess the impact of tidal effect on River Water quality 
simulation. Journal of Environmental Management, 90(5), 
1824-1832.DOI: 10/.1016/j. jenvman.2008.11.011.

Han, H.G., Qiao, J.F. and Chen, Q.I. (2012): Model predicti-
ve control of dissolved oxygen concentration based on 
a self-organizing RBF neural network. Control Engineer-
ing Practice, 20(4), 465-476. DOI:10.1016/j.conengprac.
2012.01.001.

Haykin, S. (1994): Neural Networks: A Comprehensive Foun-
dation. (2nd ed.), New York, Macmillan.

Liu, Y., Zheng, Q., Shi, Z. and Chen, J. (2004): Training radial 
basis function networks with particle swarms. In Inter-
national Symposium on Neural Networks. Springer Ber-
lin Heidelberg, 317-322. DOI: 10.1007/978-3-540-28647-
9_54.

Maier, H.R. and Dandy, G.C. (2000): Neural Networks for the 
prediction and forecasting of water resources variables: a 
review of modeling issues and applications. Environmen-
tal Modelling and Software, 15, 101-124. DOI: 10.1016/
S1364-8152(99)00007-9.

Nilsson, P., Uvo, C.B. and Ronny, B. (2006): Monthly runoff 
simulation: Comparing and combining conceptual and 
neural network models. Journal of Hydrology, 321, 344-
363. DOI: 10.1016/j.jhydrol.2005.08.007.

Ning, S.K., Chang, N.B., Yang, L., Chen, H.V. and Hsu, H.Y. 
(2001): Assessing pollution prevention program by 
QUAL2E simulation analysis for the Kao-Ping River 
 Basin, Taiwan. Journal of Environmental Management, 
61(1), 61-76. DOI:10.1006/jema.2000. 0397.

Noori, R., Hoshiyaripour, G.A. Ashrafi , K. and Arabi, B.A. 
(2010b): Uncertainty analysis of developed ANN and AN-
FIS models in prediction of carbon monoxide daily con-
centration. Atmospheric Environment, 44(4), 476-482. 
DOI:10.1016/j.atmosenv.2009.11.005.

Noori, R., Karbassi, A., Farokhnia, A. and Dehghani, M. 
(2009a): Predicting the longitudinal dispersion coeffi cient 
using support vector machine and adaptive neuro-fuzzy 
inference system techniques. Environmental Engineering 
Science, 26, 1503-1510. DOI: 10.1089/ees.2008.0360.

Noori, R., Khakpour, A., Omidvar, B. and Farokhnia, A. 
(2010a): Comparison of ANN and principal component 
analysis multivariate linear regression models for predict-
ing the river fl ow based on developed discrepancy ratio 
statist. Expert Systems with Applications, 37(8), 5856-
5862. DOI:10.1016/j.eswa.2010.02.020.

Noori, R., Karbassi, A., Ashrafi , K., Ardestani, M., Mehrdadi, 
N. and Bidhendi, G.R.N. (2012): Active and online predic-
tion of BOD5 in river systems using reduced-order support 

vector machine. Environmental Earth Sciences, 67(1), 
141-149. DOI:10.1007/s12665-011-1487-9

Noori, R., Safavi, S. and Shahrokni, S.A.N. (2013b): A re-
duced-order adaptive neuro-fuzzy inference system model 
as a software sensor for rapid estimation of fi ve-day bio-
chemical oxygen demand. Journal of Hydrology, 495, 175-
185. DOI:10.1016/j.jhydrol.2013.04.052

Noori, R., Ashrafi , K., Karbassi, A.R., Ardestani, M. and 
Mehrdadi, N. (2013a): Development and application of 
reduced-order neural network model based on proper or-
thogonal decomposition for BOD5 monitoring: Uncertain-
ty analysis. Environmental Progress & Sustainable Energy, 
32(2), 344-349. DOI: 10.1002/ep.11610

Noori, R., Yeh, H.D., Abbasi, M., Kachoosangi, F.T. and 
Moazami, S. (2015): Uncertainty analysis of support vec-
tor machine for online prediction of fi ve-day biochemical 
oxygen demand. Journal of Hydrology, 527, 833-843. 
DOI:10.1016/j.jhydrol.2015.05.046

Onkal-Engin, G., Demira, L. and Enginb, S.N. (2005): Determi-
nation of the relationship between sewage odour and BOD 
by neural networks. Environmental Modelling and Soft-
ware, 20, 843-850. DOI: 10.1016/j.envsoft.2004.04.012.

Orr, M.J. 1996. Introduction to Radial Basis Function Net-
works, University of Edinburgh, Scotland. URL: http://
www.cc.gatech.edu/~isbell/tutorials/rbf-intro.pdf.

Park, S.S. and Lee, Y.S. (2002): A water quality modeling 
study of the Nakdong River, Korea. Ecological Modelling, 
152(1), 65-75. DOI: 10.1016/S0304-3800(01)00489-6.

Sahoo, G.B. and Ray, C. (2006): Flow forecasting for a Hawaii 
stream using rating curves and neural networks. Journal of 
Hydrology, 317, 63-80. DOI: 10.1016/j.jhydrol.2005.05.008.

Sharma, D., Kansal, A. and Pelletier, G. (2015): Water quality 
modeling for urban reach of Yamuna River, India (1999–
2009), using QUAL2Kw. Applied Water Science, DOI 
10.1007/s13201-015-0311-1.

Singh, K.P., Basant, A., Malik, A. and Jain, G. (2009): Artifi -
cial neural network modeling of the river water quality – a 
case study. Ecological Modelling, 220(6), 888-895. DOI: 
0.1016/j.ecolmodel.2009.01.004.

Singh, K.P. and Gupta, S. (2012): Artifi cial intelligence based 
modeling for predicting the disinfection by-products in 
water. Chemometrics and Intelligent Laboratory Systems, 
114, 122-131. DOI:10.1016/j.chemolab.2012.03.014.

Singh, K.P., Gupta, S., Ojha, P. and Rai, P. (2013): Predicting 
adsorptive removal of chlorophenol from aqueous solution 
using artifi cial intelligence based modeling approaches. 
Environmental Science and Pollution Research, 20, 2271-
2287. DOI: 10.1007/s11356-012-1102-y.

Singh, K.P., Ojha, P., Malik, A. and Jain, G. (2009): Partial 
least squares and artifi cial neural networks modeling for 
predicting chlorophenol removal from aqueous solution. 
Chemometrics and Intelligent Laboratory Systems, 99, 
150-160. DOI: 10.1016/j.chemolab.2009.09.004.



23 A software sensor for in-situ monitoring of the 5-day biochemical oxygen demand

The Mining-Geology-Petroleum Engineering Bulletin and the authors ©, 2018, pp. 15-23, DOI: 10.1177/rgn.2018.1.3

SAŽETAK

Programski senzori za petodnevno terensko opažanje biokemijske potrošnje kisika

Prikazana su dva senzora temeljena na tehnikama umjetne inteligencije. Namijenjeni su opažanju tijekom petodnev-
noga, tj. vremenski zahtjevnoga, postupka određivanja biokemijske potrošnje kisika (BPK5). Vrijednost se tako može, 
nakon mjerenja, izračunati gotovo trenutačno. Upotrijebljene su mreža usmjerene vrste i mreža temeljena na radijalnoj 
funkciji (skr. UUNM, RFUNM), kojima se odredila najveća vrijednost te potrošnje (BPK5(maks)). To je funkcija srednje, 
najveće i najmanje vrijednosti otopljenoga kisika (OKsred, OKnajveći, OKnajmanji). Mjerenje je načinjeno u rijeci Sefi drood. 
Nadalje, mreža je optimizirana primjenom Levenberg-Marquardtova (LM), elastičnoga, povratnoga (EP) i algoritma 
skaliranoga, konjugiranoga gradijenta (SKG). Rezultati su pokazali kako je za uvježbavanje i provjeru najbolji Leven-
berg-Marquadtov algoritam. Također, svaka je mreža ocijenjena uporabom srednje kvadratne pogrješke, koefi cijentom 
korelacije te omjerom odstupanja. Rezultati su pokazali kako su obje mreže, usmjerena i radijalna, postigle približno 
jednake rezultate.

Ključne riječi
usmjerena mreža, mreža s radijalnom funkcijom, otopljeni kisik, kalibracija, BPK5
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