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Abstract
Driven by advancements in technology, tight-gas fi eld development has become a signifi cant source of hydrocarbon to 
the energy industry. The amount of data generated in the process is immense as most platforms are now being digitized. 
Machine learning tools can be used to analyse this data in order to build patterns between several dependent and inde-
pendent variables. Forecasting initial gas production rates has important implications in the planning production/pro-
cessing facilities for new wells, aff ects investment decisions and is an important component of reporting to regulatory 
agencies. This study is based on the analysis of reservoir rock/fl uid properties and selected well parameters to build de-
cision-based models that can predict initial gas production rates for tight gas formations. In this study, two machine 
learning predictive models; Artifi cial Neural Network (ANN) and Generalized Linear Model (GLM), were used to deter-
mine the expected recovery rate of planned new wells. Production data was retrieved from 224 wells and used in develop-
ing the model. The results obtained from these models were then compared to the actual recorded initial gas production 
rate from the wells. Results from the analysis carried out revealed a Mean Square Error (MSE) of 1.57 on a GLM model 
whereas the ANN model gave an MSE of 1.24. Key Performance Index for the ANN model revealed that reservoir thick-
ness had the highest (36.5%) contribution to the initial gas production rate followed by the fl owback rate (29%). The 
reservoir/fl uid properties contribution to the initial gas production rate was 53% while the hydraulic fracture parameters 
contribution to the initial gas production rate was 47%.
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1. Introduction

As technological advancements continue to improve 
daily in the oil and gas sector, spurred by advancements 
in shale oil and gas development, smart fi eld develop-
ment, cheaper and more reliable data storage technolo-
gies have led to an increase in the amount of data cap-
tured in the industry. For example, in developing tight 
gas formations, hydraulic fracturing is used to produce 
fractures in rock formations which stimulate the fl ow of 
natural gas. Reservoir modelling in such systems is an 
extremely complicated task, given the need to simulate 
fl uid fl ow in a network of induced natural fractures cou-
pled to geo-mechanical effects and other processes such 
as water blocking, non-Darcy fl ow in nano-scale pores, 
and adsorption/desorption (Cipolla et al., 2010 and 
Ding et al., 2014). Tight gas refers to natural gas trapped 
in a reservoir with a matrix permeability lower than 
0.1×10-3 μm2, which usually has no natural deliverability 

or lower natural deliverability than the industrial stand-
ard, so stimulation or special treatment wells must be 
used to obtain commercial gas fl ow. (National Energy 
Administration, 2011). Tight gas reservoirs can be di-
vided into two types based on reservoir characteristics, 
reserves, and structural positions; Continuous-type and 
Trap-type tight gas reservoirs (Da et al., 2012).

Oil and gas production companies use thousands of 
sensors installed in the subsurface and surface facilities 
to provide continuous data collection, real-time monitor-
ing of assets and the environmental conditions (Ab-
delkadir and Luc, 2014). This data comes in structured, 
semi-structured and unstructured forms. According to 
Gupta (2016), analytics reveal patterns and relation-
ships in this data in order to improve decision making. 
Analytical techniques are used to identify patterns in 
historical and even specifi c data which can then be cor-
related to current or future data to identify risk and op-
portunities (Bravo et al. 2014). Machine learning in re-
cent times has been successfully employed in different 
fi elds where huge amounts of data are prevalent to gen-
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erate data driven models for operation and business de-
cision making purposes (Hastie et al. 2001).

The use of neural networks in data analysis is not new 
to the petroleum industry. Malvić and Prskalo (2007) 
applied a back propagation neural network in the pro-
cessing of three seismic attributes: amplitude, phase and 
frequencies from 14 wells. The results were subsequent-
ly used to predict reservoir porosity. Cvetković et al. 
(2009) used two types of neural networks: supervised 
learning-multilayer perceptron and the radial basis func-
tion neural network to successfully predict the lithology 
and the hydrocarbon saturation of the Upper Pannonian 
sediments and Lower Pontian deposits in the Kloštar 
fi eld. Malvić et al (2010) utilized supervised neural al-
gorithms for well log and seismic data analysis in three 
fi elds. The algorithms used in their work mainly consist 
of multi-layer perceptron architecture and the activation 
function used was sigmoid or log-sigmoid. However, a 
radial basis function was also used as an activation func-
tion for one network. This implies that different types of 
back propagation architecture and activation can be 
used. Šapina (2016) in his work made an interesting 
comparison between mapping using artifi cial neural net-
work (ANN) and the ordinary kriging method. Although 
from his work, the ordinary kriging method had a lower 
mean square error, this was attributed mainly to the fact 

that ANN utilized a relatively small amount of data in 
comparison with kriging.

In this paper, machine learning is used to generate 
data driven models for business operational and business 
decision purposes in the oil and gas sector especially in 
the unconventional reservoirs. Some of the most com-
monly used machine learning algorithms include but are 
not limited to linear regression algorithms, support vec-
tor machines, artifi cial neural networks, clustering anal-
ysis, principal component analysis, fuzzy logic (Trent, 
2016). The selection of any of these algorithms depends 
in part on the type of data, the type of problem (regres-
sion, and classifi cation) and whether the problem is a 
supervised or an unsupervised learning problem. An ac-
curate forecast of the initial production rate of a well is 
necessary for estimating reservoir performance, and 
for designing production systems. According to Zhou et 
al. 2017, two methods used to forecast the production 
rate of a well producing from an unconventional reser-
voir are:

 i.  Simulation: Simulation is one of the best means of 
forecasting the initial production rate of a given 
well in a reservoir. However, running a successful 
simulation takes time to build a representative 
model. More data, lots of loops and iterations are 
also required.

Figure 1: Geographic location of Ordos Basin (adapted from Zhao et al, 2016)
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ii.  Analytical Method (Material Balance): The math-
ematical models that govern the fl ow of fl uid in an 
unconventional reservoir are too complex to com-
pute analytically. Moreover, the use of material 
balance models requires previous production data 
to estimate gas production rates.

Considering the limitations of the two methods of 
predicting the initial production rate for a tight gas for-
mation (as stated above), this paper seeks to explore an 
alternative method (predictive analytics) to forecast an 
initial gas production rate. The choice of this method 
stems from the ability to use data obtained during the 
drilling and exploration phase to predict initial gas pro-
duction rate, without prior production from a well.

The objective of this research is to build a predictive 
model that can estimate the initial gas production rate of a 
well in the fi eld. This paper seeks to predict the initial gas 
recovery rate of a newly planned well. The approach used 
in this research is based on the analysis of reservoir rock 
and fl uid properties and selected well parameters to build 
decision based models that can predict oil recovery.

2. Geological setting of the reservoir
The Ordos Basin is China’s second-largest sedimen-

tary basin and covers an area of 370,000 km2 across 
Shaanxi, Gansu and Shanxi provinces and Ningxia and 
Inner Mongolia in the mid-western region of China 
(China National Petroleum Corporation, 2008) as 
shown in Figure 1. The bottom of the basin is composed 
of crystalline rocks and metamorphic rocks of Middle-
Lower Proterozoic and Archaeozoic rocks. The sedi-
mentary cover roughly underwent fi ve phases: aulaco-
gen structure in Middle-Late Proterozoic, epicontinental 
sea in Early Paleozoic, continental-marine transition in 
Late Paleozoic and fault depression in the Cenozoic 
(Tingting et al, 2014). Presently, three hydrocarbon-
bearing sequences have been found in the basin, includ-
ing Lower Palaeozoic, Upper Palaeozoic and Mesozoic, 
of which the Upper Triassic Yanchang Formation and 
Jurassic Yanan Formation are the main oil-bearing for-
mations as shown in Figure 2.

In this study, data from the Sulige, Daniudi, Yulin, 
Zizhou, and Wushenqi gas fi elds were used. All reser-

Figure 2: A superimposed map of the study area and hydrocarbon generation 
intensity of upper Paleozoic coal source rock. (adapted from Wei et al, 2017)
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voirs are located within the late Triassic Yanchang for-
mation. The combined reservoirs cover an area of ap-
proximately 25×104 km2. The average net pay thickness 
of a reservoir is 2.68 m. Proven geological reserves of 
free natural gas are estimated to be 1293 ×108 m3 (Dai et 
al. 2012). Other main reservoir characteristics are given 
in Table 1. The late Triassic Yanchang formation com-
prises a succession of lacustrine sediments dominated by 
fl uvial-deltaic sandstones and siltstones shed from ba-
sin-margin uplifted mountains (Zou et al. 2010).

3. Methods

The methodology used in this work is summarized in 
Figure 3. 224 data sets were acquired and used for this 
analysis consisting of a data frame of 10 variables. The 
main variable of focus; prod_rate, represents the initial 
gas production rate of each well in the fi eld. The other 
variables in the data set were divided in two sets below:

 i.  Reservoir/fl uid properties variables: reservoir thick-
ness, shale content, porosity, permeability of the 
formation and gas saturation.

ii.  Well design variables: volume of fracture fl uid, 
fracture pressure of the formation, fl uid fl ow-back 
rate, and hydraulic fracture liquid pump rate.

A brief section of the data set used in this research is 
shown in Table 3.

The last column in the data set shown in Table 3 is the 
production rate (initial gas production rate of each well). 
For the purpose of this study, the reservoir/fl uid proper-
ties and the well design variables were referred to as the 
‘explanatory variables’ while the initial gas production 
rate (production rate) was referred to as the ‘response 
variable’ in the predictive models.

3.1 Correlation analysis

In correlation analysis, simple statistical methods are 
used to explore the variables in the data set to establish 
the relationships that exit between each variable in the 
data set and to know the degree of signifi cance of each 
relationship among the variables (Schuetter et al. 2015). 
In examining the relationship between the variables, a 
correlation containing two outputs was generated: (i) the 
correlation matrix which shows the coeffi cient of corre-
lation between the variables as shown in Table 4 and (ii) 
the p-values which show the degree of signifi cance of 
the correlations as shown in Table 5. A p-value greater 
than 0.05, indicates a signifi cant positive correlation be-
tween the two variables.

The correlation coeffi cient was used in the analysis of 
design parameters to determine how the production rate 
can be improved in remedial operations. As observed in 
Table 4, the correlation between gas saturation and per-
meability revealed the largest negative correlation in the 

Table 1: Basic data of large tight gas fi elds in Ordos Basin (adapted from Dai et al. 2012)

Field Geological reserves*
/108 m3

Annual output*
/108 m3 Mean porosity/%

Permeability/10-3 μm2

Range Mean value
Sulige 11008.2 104.75 7.163 0.001–101.099 1.284
Daniudi 3926.8 22.36 6.628 0.001–61.000 0.532
Yulin 1807.5 53.3 5.630 0.003–486.000 4.744
Zizhou 1152.0 5.87 5.281 0.004–232.884 3.498
Wushenqi 1012.1 1.55 7.820 0.001–97.401 0.985
Shenmu 935 0 4.712 0.004–3.145 0.353
Mizhi 358.5 0.19 6.180 0.003–30.450 0.655

Note: *data for the year of 2010

Table 3: Nine (9) sets of data used in the study

Reservoir 
Thickness 
(m)

Shale 
Content 
(%)

Porosity 
(%)

Gas 
Saturation 
(%)

Permeability
(10-4mD)

Fracture 
Fluid (m3)

Fracture
pressure 
(KPa)

Flowback 
(%)

Pump rate 
(m/min)

Production
rate (m3/day)

2.29 2.67 3.04 8.14 0.51 142.83 28.47 82.5 2.88 4.92
1.93 2.89 2.74 7.77 0.43 148.10 39.19 82.5 3.27 2.66
2.48 3.26 2.85 7.72 0.59 134.01 33.60 83.5 3.16 4.37
2.13 2.42 2.98 7.48 0.96 130.31 35.41 85.9 3.19 1.74
1.78 2.90 2.81 7.11 0.35 133.88 31.22 86.3 3.12 3.30
2.21 3.09 2.71 7.71 0.37 137.02 32.54 80.5 2.79 2.69
2.13 2.78 3.04 7.83 0.59 126.36 32.79 82.5 2.94 3.48
2.11 2.45 3.01 7.74 0.45 142.85 30.12 80.5 3.12 3.81
2.42 2.35 3.02 8.08 0.53 135.34 28.64 83.9 2.92 1.92
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plot which means that an increase in the values of per-
meability leads to a decrease in the value of the specifi c 
gravity of the oil and vice-versa and this can be seen 
with a signifi cant value of -0.72. It should be noted, 
however, that the smaller the p-value, the more signifi -
cant the relationship, whereas the larger the correlation 
coeffi cient, the stronger the relationship.

3.2 K-Mean clustering analysis

K-mean clustering is an unsupervised machine learn-
ing algorithm and is one of the most commonly used 
clustering methods which have been studied for many 
decades and this means that it stands as a basis for many 
new sophisticated clustering algorithms (Lantz, 2015). 
In unsupervised learning, the result of the cluster analy-

sis is not privy to any known shape or pattern that may 
be present in the data. However, for this analysis, a semi-
supervised cluster was conducted. The numbers 5 and 3 
were assigned to the k-value which may not correspond 
to the value of the optimum number of clusters (k).

The prod_rate (initial gas production rate) of the 
wells in the tight gas formation was used in the cluster-
ing. The idea is to subset only the cumulative production 
of the wells from the data set and using the value of k = 
5 and k = 3, group the wells into categories that represent 
the following: (i) poor, (ii) average, (iii) good, (iv) very 
good and (v) excellent. The second clustering with k = 3 
is group under the following group with each group rep-
resenting each cluster group as: (i) poor, (ii) average and 
(iii) good.

Figure 3: Flowchart of the workfl ow employed in this study

Table 4: Matrix plot showing the correlation coeffi  cient

Perm Fracture_
fl uid

Pump_
rate

Reservoir_
thickness

Prod_
rate Porosity Gas_sat Flowback Shale_

content
Frac_
press

Perm 1 0.11 -0.01 0.36 0.2 0.07 -0.72 -0.16 -0.04 0.05
Frac_fl uid 0.11 1 0.71 0.56 0.51 0.12 -0.16 -0.27 0.06 0.13
Pump_rate -0.01 0.71 1 0.24 0.33 0.13 -0.02 -0.31 0.05 -0.02
Reservoir_
thickness 0.36 0.56 0.24 1 0.67 0.07 -0.39 -0.25 -0.07 0.1

Prod_rate 0.2 0.51 0.33 0.67 1 0.18 -0.17 -0.36 -0.1 0.08
Porosity 0.07 0.12 0.13 0.07 0.18 1 0.2 -0.19 -0.11 -0.14
Gas_Sat -0.72 -0.16 -0.02 -0.39 -0.17 0.2 1 0.08 -0.25 -0.06
Flowback -0.16 -0.27 -0.31 -0.25 -0.36 -0.19 0.08 1 0 -0.02
Shale_content -0.04 0.06 0.05 -0.07 -0.1 -0.11 -0.25 0 1 0.06
Frac_press 0.05 0.13 -0.02 0.1 0.08 -0.14 -0.06 -0.02 0.06 1
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Table 5: P-value showing the degree of signifi cance of the correlations

Reservoir_
thickness

Shale_
content Porosity Gas_

sat Perm Fracture_
fl uid

Frac_
press Flowback Pump_

rate
Prod_
rate

Reservoir_
thickness 0.30 0.32 0.00 0.00 0.00 0.14 0.00 0.00 0.00

Shale_content 0.30 0.11 0.00 0.58 0.40 0.41 0.98 0.44 0.15
Porosity 0.32 0.13 0.00 0.28 0.07 0.03 0.01 0.05 0.01
Gas_sat 0.00 0.00 0.00 0.00 0.02 0.39 0.23 0.74 0.01
Perm 0.00 0.58 0.28 0.00 0.09 0.47 0.02 0.95 0.00
Fracture_fl uid 0.00 0.40 0.07 0.02 0.09 0.06 0.00 0.00 0.00
Frac_press 0.13 0.40 0.03 0.39 0.47 0.06 0.73 0.72 0.25
Flowback 0.00 0.98 0.00 0.23 0.02 0.00 0.73 0.00 0.00
Pump_rate 0.00 0.44 0.05 0.73 0.91 0.00 0.72 0.00 0.00
Prod_rate 0.00 0.15 0.01 0.01 0.00 0.00 0.25 0.00 0.00

Figure 5: Clustering the initial gas production rate with 3 cluster groups.

Figure 4: Clustering the initial gas production rate with 5 cluster groups
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The scatter plot of the production rate cluster for k = 
5 is given in Figure 4 while the plot for k = 3 is given in 
Figure 5. The colour code in the cluster scatter plot 
showed the different cluster groups in the cluster and 
which observation belonged to each cluster. From the 
scatter plots, the cluster with 3-cluster groups revealed a 
clear demarcation between each cluster group more than 
the 5-cluster group. Observation of the 5-cluster group 
shows that demarcating (separating) the groups 1-3 in 
the 5 cluster group seems very problematic as compared 
with the 3 cluster group which displays a somewhat 
clear demarcation between the three groups.

The importance of the cluster lies in identifying the 
wells that are producing within the expected design con-
ditions or below expectation. The results from the clus-
ter analysis were further evaluated during the Look-
Back Analysis to determine which of the wells actually 
fell into the categories presented above in the presence 
of other variables.

3.3 Predictive model analysis

The next phase involves the prediction of the initial 
gas production rate of the wells using other numerical 
explanatory variables. In building the prediction models, 
two machine learning algorithms were employed. The 
fi rst was using an Artifi cial Neural Network (ANN) 
and the second involves using a Generalized Linear 
Model (GLM). The idea was to evaluate which of the 
machine learning algorithm better forecast the initial gas 
production.

3.3.1 Artifi cial Neural Network model

The ANN model was built to forecast the initial gas 
production rate given the reservoir parameters and well 
design parameters. The data set contained a total number 
of 10 variables with 224 observations. In training the 
model, the last variable in the data set; prod_rate is the 
output variable while the other nine variables: ‘reser-
voir_thickness’, ‘shale content’, ‘perm’, ‘porosity’, 
‘gas_sat’, ‘frac_fl uid’, ‘Pump_rate’, ‘frac_press’ and 
‘fl owback’ were the input variables. Sampling was used 
to split the data into training validation and test sets in a 
ratio of 80:10:10 which gave input observations of 179 
for the training data set, a validation data set of 22 wells 
and a test data set of 23. The input set was used to train 
the model; the validation set was used to scale the model 
to ascertain the prediction rate while the test set was 
used to make the actual predictions of the well.

A neural network works best when the input values to 
the network are scaled on a scale of 0-1 or normalized on 
a scale of 0 to 1 or -1 to 1. The scale of using normaliza-
tion or scaling depends mostly on the nature of the data. 
For the purpose of this work, the normalization function 
in Equation (1) was used.

  (1)

Where:
x – the observation at a particular point in a variable
min(x) – minimum observation value for each viable
max(x) – maximum observation value of each varia-

ble.
The model was trained over a range of hidden layers 

with different hidden nodes in order to select the best 
model. Table 6 shows some of the hidden nodes and 
their prediction rate when used on the validation and test 
data set using the Mean Squared Error (MSE) method as 
the measure of the quality of fi t of the model.

After running the model over a range of hidden layers 
and nodes, and using cross validation, the model train 
with 1 hidden layer and 1 node was selected as having 
the best prediction rate when tested with the test data set. 

Table 6: Mean Square Error of 5 ANN models 
with diff erent architectures

Number of 
Hidden layer

Number of 
nodes in the 
hidden layer

MSE Using 
Validation 
Data Set

MSE Using 
Test Data Set

1 1 3.25 1.24
1 2 4.42 9.53
1 3 5.24 7.17
1 5 9.80 17.17
2 3 3.85 2.66

Figure 6: Architecture of the neural network used in this analysis
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Table 7: Results from the fi rst 9 data set using ANN and GLM models 

Test Data set Validation Data Set
s/n Actual Predicted (ANN) Predicted (GLM) Actual Predicted (ANN) Predicted (GLM)
1 3.48 3.01 3.11 1.74 1.75 2.97
2 2.94 2.15 2.7 2.69 2.46 3.07
3 1.92 3.39 3.19 3.36 2.36 3.13
4 2.23 2.74 2.93 3.91 2.42 3.29
5 3.39 3.28 3.27 10.01 8.86 8.9
6 5.32 3.73 3.6 9.69 4.35 6.44
7 3.29 2.58 3.07 3.16 2.99 4.07
8 2.95 1.91 2.5 2.51 2.62 3.49
9 4.73 3.1 2.94 4.12 2.51 3.4

Figure 8: Measure of quality of fi t for the GLM using the validation and test data set

Figure 7: Measure of quality of fi t for the ANN model using the test and validation data set
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The MSE for the selected model (model with one hidden 
layer and 1 node is 1.2411 and thus was used for the re-
maining part of this research. Figure 6 shows the sche-
matics of the ANN model.

3.3.2 Generalized Linear Model (GLM) model

The second model was built using the generalized lin-
ear algorithm. The same procedure used in the neural 
network was employed for the GLM model. The only 
difference is that scaling or normalization was not neces-
sary in this case. The model gave a test MSE of 1.57 
which is above the MSE value for the ANN model. This 
means that the ANN model performed better than the 
GLM model.

4. Results

The results of the fi rst 9 predictions of the ANN and 
GLM Model using the validation and the test data set are 
presented in Table 7. The results of the model fi t the data 
considerably well as observed in Table 7.

The plot of the ANN model predictions against the ac-
tual initial gas production rate for each well using both the 
test and validation data set is given in Figure 7. The line 
through the plot is the 45o line used to measure the good-
ness of the fi t model. The closer the plotted points are to 
the 45o line, the better the model performance is applica-
ble. The goodness fi t for GLM is given by Figure 8.

In the sensitivity analysis, only the variables that 
could be altered mechanically (hydraulic and well de-
sign parameters) were considered, for example; fl ow-
back, frac_press, frac_ fl uid, and pump_rate. The sen-
sitivity plot was produced with quantiles of (0, 0.1, 0.5, 
0.9, 1).

To illustrate the importance of the sensitivity analysis, 
the variable; fl owback for well 1 was analysed. The nor-
malized fl owback rate for well 1, as used in building the 
model is given as 0.50, the actual fl owback rate before 
normalization is 82.5 while the actual initial production 
rate for the well is 4.92. Table 8 shows the expected pro-
duction rates for the different quantiles for well 1. To get 

the exact value, the extracted value from the sensitivity 
model was denormalized since the data set used to train 
the ANN model was normalized before training the 
model.

5. Discussion

5.1 Key Performance Index (KPI)

The variable importance plot showed the level of con-
tribution of each input variable to the model. The result 
from the Key Performance Index was summarized in 
two different parts; (i) reservoir and fl uid properties and 
(ii) well design properties (hydraulic fracture design 
properties). The reason for this classifi cation is to quan-
tify the impact of design properties on the well perfor-
mance in the event of alterations. This helps to select a 
better design model for remedial operations or for the 
proper selection of well design properties for a new well 
in the formation.

To estimate the key performance index of the models, 
the following algorithms were used:

 i. Garson Algorithm (ANN);
ii. Variable Importance (GLM).
The Garson algorithm is only used for a neural net-

work with one hidden layer and a single response varia-
ble (Gevrey 2003). The relative importance of a specifi c 
explanatory variable can be determined by identifying 
all weighted connections between the nodes of interest 
(from input to output). The connection weights are tal-
lied for each input variable that describe the relationship 
which gives a single value for each input variable. The 
algorithm originally indicates an absolute magnitude of 
the explanatory (input) variable from 0 to 1. The result 
of the variable importance using Garson algorithm is 
given in Figure 9.

Table 8: Result of sensitivity analysis for Well 1

Quantile Range 
used in the sensitivity 
analysis

0.00 0.10 0.50 0.90 1.00

Sensitivity values 
at the quantile range 
for Well 1

0.10 0.14 0.18 0.33 0.75

Renormalized 
fl owback values 
at the quantiles 
for Well 1(m3/day)

63.9 65.37 67.67 78.54 93.83

Renormalized 
predicted values at the 
quantiles for Well 1

2.06 2.41 2.99 4.74 9.46

Figure 9: ANN Key Performance Index using 
Garson algorithm

Figure 9 shows that reservoir thickness has the high-
est KPI in the model followed by the fl owback rate. The 
result of the percentage contribution of each explanatory 
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variable is given in the table below. The cumulative sum 
of the model KPI in the plot equals to 1 or 100%. Table 
9 shows the summary of the percentage contribution of 
the reservoir and fl uid properties and the contribution of 
the well design parameters to the model.

selected as the best model goes also to suggest that the 
model with the lowest MSE produces the best KPI. Thus 
the KPI generated using the Garson algorithm is selected 
as the best KPI that best explains the data set.

5.2 Look-back analysis

The look-back analysis was conducted to determine 
the relative performance of each well with regards to the 
production rate and to determine the expected recovery 
in the event that some of the production parameters used 
in the model design were altered. In general, explanatory 
variables are analysed to determine if the well is under 
performing, performing as expected or exceeds the ex-
pectation rate. It is a general idea that a certain reservoir 
and fl uid properties do not change with time. For exam-
ple, the reservoir thickness remains constant throughout 
the producing life of a fi eld.

In conducting the look-back analysis, more emphasis 
was placed on the well design parameters (hydraulic 
fracturing parameters) of the well that were used to train 
the model. The aim was to generate a set of random var-
iables for the design parameters of the well and keeping 
the reservoir properties constant, feed the new data set 
into the model and get a new forecast rate for the each 
well using the simulated data.

The look-back analysis was based on two categories. 
For the fi rst category with 5 groups, the results were: 
‘excellent = 82 wells (37 %)’, ‘very good = 21 wells (9 
%)’, ‘good = 21 wells (9 %)’, ‘average = 28 wells (13 
%)’, ‘poor = 72 wells (32 %)’. The results of the second 
category have 3 groups with results: ‘good = 78 wells 
(34 %)’, ‘average = 74 wells (32 %)’ and ‘poor = 78 
wells (34 %)’.

6. Conclusions

Two Machine Learning models have been presented 
in this study for the prediction of the initial gas produc-
tion rate for tight gas reservoirs using selected reservoir 
and well parameters. The value that the predictive ana-
lytics can add in tight gas production management is of 
particular importance. The ANN model with one hidden 
layer was built by cross-validation with a minimum 
Mean Square Error of 1.24 while the GLM model gave a 
Mean Square Error of 1.57. This means that the ANN 
model outperformed the GLM model in forecasting gas 
production and as such was used for the look-back anal-
ysis. The ANN model was also used to rank the KPI of 
the explanatory variables employed in the predictive 
model. The KPI shows that the reservoir thickness has 
the highest contribution to the initial gas production rate 
followed by the fl owback rate. The reservoir/fl uid prop-
erties contribution to initial gas production rate is 53% 
while the hydraulic fracture parameters contribution to 
initial gas production rate is 47%. This study concludes 

Table 9: Reservoir/well design properties percentage 
contribution to the data set for ANN

Reservoir properties 
contribution to the model 
(%)

Design (hydraulic fracture) 
parameters contribution 
to the model (%)

Reservoir Thickness 36.50 Flowback 29.00
Porosity 8.50 Pump_Rate 8.50
Perm 4.50 Fracture Fluid 6.50
Gas.Sat 2.50 Frac_Press 3.00
Shale Content 0.10
Total 53 47

Table 10: Reservoir/Well design properties percentage 
contribution to the data Set for GLM

Reservoir properties 
contribution to the model (%)

Design (hydraulic fracture) 
parameters contribution to 
the model (%)

Reservoir Thickness 50.03% Fracture_Fluid 19.00%
Perm 3% Flowback 12.00%
Gas.Sat 3% Pump_Rate 9.00%
Porosity 3% Frac_Press 0.00%
Shale Content 1%
Total 60% 40%

Figure 10: GLM Key Performance Index

The results of KPI of the variables used in training the 
GLM model are given in Figure 10. Table 10 shows the 
percentage contribution of the individual variables 
grouped under reservoir/fl uid properties and well design 
properties. The result affi rmed the fact that the initial 
reservoir thickness contributed the most to the initial gas 
production. In selecting the best KPI, the MSE rule was 
used. The idea that the model with the lowest MSE is 
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that reservoir/well design parameters obtained during 
geophysical exploration can be used to predict the initial 
gas production rate of planned new wells from tight gas 
reservoirs with reasonable accuracy using artifi cial neu-
ral networks. Furthermore, the accuracy of prediction of 
the neural network model depends largely on its archi-
tecture (number of hidden layers and number of nodes).
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8. Nomenclature

Gas_Sat Gas Saturation (%)
Perm Permeability (103milli-darcy)
MSE Mean Squared Error
Pump_rate  Fracture liquid Pump rate (m3/

min)
Flowback Liquid Flowback Rate (%)
Frac-press   Fracture Pressure need to for 

Hydraulic Fracturing (KPa)
Porosity  Porosity (%)
Frac_fl uid  Volume of Fracture Fluid (m3)
Reservoir_thickness  Thickness of a formation where 

a well is located (m)
Prod_rate  Initial Gas production rate of 

the wells (m3/day)

SAŽETAK

Primjena strojnoga učenja u predviđanju početne proizvodnje plina 
iz ležišta male propusnosti

Napredak tehnologije pridobivanja iz ležišta male propusnosti, tj. nekonvencionalnih ležišta, pridonio je znatnoj proiz-
vodnji iz takve vrste ležišta ugljikovodika. Broj prikupljenih podataka ogroman je i većina ili svi su u digitalnome obliku. 
Strojno učenje jedan je od načina kako se takvi podatci mogu analizirati i time povezati niz (zavisnih i nezavisnih) vari-
jabli. Predviđanje početne proizvodnje ima važnu ulogu u planiranju i opremanju samih ležišta i polja, a time utječe na 
odluke o investicijama te izvješća predana regulatornim agencijama. Ovdje je prikazana analiza ležišnih stijena i fl uida 
na temelju bušotinskih podataka. Načinjen je model odlučivanja kojim je određen početni iznos proizvodnje iz nekon-
vencionalnoga ležišta. Uporabljena su dva modela predviđanja razvijena strojnim učenjem – umjetna neuronska mreža 
(UNM) te poopćeni linearni model (PLM). Izračunan je očekivani iscrpak novih bušotina. Srednja kvadratna pogrješka 
(SKP) za PLM iznosila je 1,57, a za UNM 1,24. Indeks ključnih svojstava pokazao je kako debljina ležišta ima najveći 
 utjecaj (36,5 %) na početnu proizvodnju plina, a zatim slijedi povratni protok (29 %). Svojstva ležišta i fl uida zajednički 
sudjeluju u početnoj proizvodnji s 53 %, dok ostalih 47 % otpada na parametre hidrauličnoga frakturiranja.

Ključne riječi:
analiza predviđanja, strojno učenje, umjetna neuronska mreža, početna proizvodnja plina, povratna analiza
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