

Fig. S1. Effects of trans-10-hydroxy-2-decenoic acid (10H2DA) on: a) HCT-116 and b) SW-480 cell viability assessed with MTT assay

Back to article

Table S1. Forward and reverse primer sequences of target genes

- Land Services of the general services of the general					
Gene	Forward sequence	Reverse sequence			
β-actin	5'-AAGCAGGAGTATGACGAGTCCG-3'	5'-GCCTTCATACATCTCAAGTTGG-3'			
E-cadherin	5'-GAACAGCACGTACACAGCCCT-3'	5'-GCAGAACTGTCCCTGTCCCAG-3'			
β-catenin	5'-AAAATGGCAGTGCGTTTAG-3'	5'-TTTGAAGGCAGTCTGTCGTA-3'			
N-cadherin	5'-GACGGTTCGCCATCCAGAC-3'	5'-TCGATTGGTTTGACCACGG-3'			
vimentin	5'-GGCTCAGATTCAGGAACAGC-3'	5'-AGCCTCAGAGAGGTCAGCAA-3'			
Snail	5'-TCAGACGAGGACAGTGGGAAAG-3'	5'-GCTTGTGGAGCAGGGACATTC-3'			

Back to article

Table S2. The effect of royal jelly and *trans*-10-hydroxy-2-decenoic acid (10H2DA) on the migration of HCT-116 and SW-480 cells. The analysis of wound space is shown as a relative level of changes of wound space compared to control cells (100 %)

HCT-116	Relative wound space/%				
1101-110	t/h				
γ(royal jelly)/(μg/mL)	0	12	24		
0	100.00±0.01	(52.4±0.9) ^a	(38.4±0.8) ^a		
10	100.00±0.01	(77.2±1.1)ab	(60.1±1.2)ab		
100	100.00±0.01	(88.1±0.7)ab	(77.6±0.4) ^{ab}		
c(10H2DA)/μM					
0	100.00±0.01	(52.4±0.9) ^a	(38.4±0.8) ^a		
10	100.00±0.01	(80.6±1.2)ab	(75.0±0.8)ab		
100	100.00±0.01	(92.5±1.0)ab	(80.8±0.8)ab		
SW-480					
γ(royal jelly)/(μg/mL)					
0	100.00±0.01	(64.9±1.0) ^a	$(51.4\pm0.5)^a$		
10	100.00±0.01	(87.8±1.2)ab	(65.1±0.5)ab		
100	100.00±0.01	(83.4±0.6) ^{ab}	(76.1±1.1) ^{ab}		
c(10H2DA)/μM					
0	100.00±0.01	(64.9±1.0) ^a	(51.4±0.5)ab		
10	100.00±0.01	(8799±2.4)ab	(75.7±3.8) ^{ab}		
100	100.00±0.01	(98.5±166)b	(85.2±2.4)ab		

Results are presented as mean value \pm S.E. of two independent experiments performed in four repeats. $^ap<0.05$ is considered as statistically significant difference between treatments compared to control at the same time, and $^bp<0.05$ is considered as statistically significant difference between concentrations in a treated group

Back to article

Table S3. Migratory and invasive potential of HCT-116 and SW-480 cells after 24 h of treatment with different concentrations of royal jelly and *trans*-10-hydroxy-2-decenoic acid (10H2DA)

, , ,	,	,			
Index of migration or invasion/A _{595 nm}					
HCT-116	Migration	Invasion			
Control	0.449±0.04	0.303±0.03			
γ(royal jelly)/(μg/mL)					
10	$(0.34\pm0.03)^a$	0.27±0.0			
100	(0.37±0.01) ^a	0.28±0.01			
c(10H2DA)/μM					
10	(0.35±0.01) ^a	0.25±0.01			
100	(0.34±0.02) ^a	(0.22±0.01) ^{ab}			
SW-480	Migration	Invasion			
Control	0.32±0.01	0.27±0.02			
γ(royal jelly)/(μg/mL)					
10	0.31±0.01	0.23±0.01			
100	(0.25±0.01)ab	0.22±0.02			
c(10H2DA)/μM					
10	0.32±0.01	(0.20±0.01) ^a			
100	0.32±0.01	$(0.19\pm0.00)^a$			

The results are shown as the index of migratio or invasion/absorbance $(A_{595\,\mathrm{nm}})$ of a mean value±S.E. from two representative experiments with four repeats. $^{\mathrm{a}}\mathrm{p}<0.05$ is considered as statistically significant difference between treatments compared to control (0 h), and $^{\mathrm{b}}\mathrm{p}<0.05$ is considered as statistically significant difference between concentrations in a treated group

FTB | Food Technology & Biotechnology April-June 2022 | Vol. 60 | No. 2 S1

Back to article

Table S4. Protein expression of E-cadherin, cytoplasmic β -catenin, nuclear β -catenin, N-cadherin, vimentin and Snail in HCT-116 and SW-480 cells after 24 h of treatments

		Re	lative fluorescence per c	ell	
HCT-116	Control	γ(royal jelly)/(μg/mL)		c(10H2DA)/μM	
	0	10	100	10	100
E-cadherin	229063±14286	(315815±42224) ^{ab}	225086±10569	233211±12262	256808±17822
Cyt. β-catenin	233982±21882	285954±41082	300825±40804	(441501±8548) ^a	(420314±45492) ^a
Nucl. β-catenin	236446±14331	(86391±4873) ^a	(98592±14193) ^a	(111902±15083) ^a	(116397±11744) ^a
N-cadherin	1175936±78681	(235817±48593) ^a	(73712±15143)ab	(236668±23124) ^a	(71845±13543) ^{ab}
vimentin	265795±29716	(104279±8012) ^a	(112400±3427) ^a	(86382±5056) ^a	(27611±7289) ^{ab}
Snail	1059201±69763	(313915±12316) ^a	(64239±16773)ab	(126957±25256) ^a	(61528±2826) ^a
SW-480					
E-cadherin	135741±5721	142876±6156	(276734±15416) ^{ab}	(187225±8306) ^a	(167475±9402) ^a
Cyt. β-catenin	586952±38904	(143203±16065) ^a	(192632±23267) ^a	(86647±9801) ^a	(147070±16421) ^a
Nucl. β-catenin	121893±19868	107706±5552	(171573±27781) ^b	120369±24178	143990±22778
N-cadherin	170722±26364	(41748±5924) ^a	(12941±1507) ^a	(17400±751) ^a	(14387±1460) ^a
Vimentin	283305±13283	(43283±3202) ^a	(43138±3482) ^a	(56968±3534) ^a	(82762.0±3469)ab
Snail	267145±20043	(111190±10631) ^a	(61938±8098) ^{ab}	(66069±8487) ^a	(53633±3912) ^a

Values are presented as a mean value \pm S.E. of the triplicates from two representative experiments. a p<0.05 is considered as statistically significant difference between treatments compared to control (0 h), and b p<0.05 is considered as statistically significant difference between concentrations in a treated group.

Cyt=cytoplasmic, Nucl=nuclear

Back to article

Table S5. Results of gene expression are presented as the fold change in mRNA expression in a target sample, normalized to a reference gene and relative to the control sample

HCT-116	E-cadherin	β-catenin	N-cadherin	vimentin	Snail
Control	1	1	1	1	1
γ(royal jelly)/(μg/mL)					
10	$(3.2\pm0.2)^{ab}$	(1.2±0.3) ^a	(0.7±0.2) ^a	(0.75±0.09) ^a	$(0.8\pm0.3)^{a}$
100	1.3±0.2	(1.4±0.2) ^{ab}	$(0.20\pm0.02)^{ab}$	$(0.48\pm0.04)^{ab}$	(0.72±0.08) ^{ab}
c(10H2DA)/μM					
10	(1.3±0.1) ^{ab}	$(2.71\pm0.08)^{ab}$	(0.57±0.08) ^a	$(0.4\pm0.1)^a$	$(0.81\pm0.02)^a$
100	1.0±0.4	$(2.37\pm0.02)^a$	$(0.42\pm0.07)^{ab}$	$(0.16\pm0.04)^{ab}$	(0.4±0.1) ^{ab}
SW-480	E-cadherin	β-catenin	N-cadherin	vimentin	Snail
SW-480 Control	E-cadherin 1	β-catenin 1	N-cadherin 1	vimentin 1	Snail 1
	E-cadherin 1	β-catenin 1	<i>N-cadherin</i> 1	vimentin 1	Snail 1
Control	E-cadherin 1 (1.35±0.08) ^a	β-catenin 1 (0.18±0.03) ^a	N-cadherin 1 (0.13±0.03) ^{ab}	vimentin 1 (0.69±0.09) ^a	Snail 1 (0.48±0.08) ^a
Control γ(royal jelly)/(μg/mL)	1	1	1	1	1
Control γ(royal jelly)/(μg/mL) 10	1 (1.35±0.08) ^a	1 (0.18±0.03) ^a	1 (0.13±0.03) ^{ab}	1 (0.69±0.09) ^a	1 (0.48±0.08) ^a
Control γ(royal jelly)/(μg/mL) 10 100	1 (1.35±0.08) ^a	1 (0.18±0.03) ^a	1 (0.13±0.03) ^{ab}	1 (0.69±0.09) ^a	1 (0.48±0.08) ^a

Values of relative gene expression were calculated according to $2^{-\Delta\Delta Ct}$ method. ap <0.05 indicates a significant difference compared to control, while bp <0.05 indicates a significant difference between concentrations in treated group

S2 FTB | Food Technology & Biotechnology April-June 2022 | Vol. 60 | No. 2