

Fig. S1. Representative scheme of the spray-drying microencapsulation process, where: $1=$ feeder, $2=$ magnetic stirrer, $3=$ peristaltic pump, $4=$ hot air/gas inlet, $5=$ atomizer nozzle, $6=$ drying chamber, $7=$ gas extractor, $8=$ cyclone, and $9=$ particle collector

## Back to article



Fig. S2. Formation of the complex coacervation involving four steps: (i) preparing an aqueous solution of two or more polymers and mixing the hydrophobic phase with the aqueous solution of a polymer, often a protein solution, and homogenizing the resulting mixture in order to produce a stable emulsion, where: $1=$ oil dispersed in the emulsion, $2=$ first solubilized polymer, $3=$ second solubilized polymer, (ii) pH change, where each polymer assumes its respective effective charges, where: $4=\mathrm{pH}$ adjustment, (iii) change in temperature to a certain value necessary to induce coacervation and phase separation, where: $5=$ refrigeration, and (iv) polymer hardening using high temperature, desolvation agent or crosslinker: 6=precipitation of coacervates

## Back to article



Fig. S3. Production steps for the electrostatic layer-by-layer deposition, where: $1=$ water, $2=$ oil, $3=$ agitation, $4=$ emulsifier, $5=$ primary emulsion, 6=polymer I, 7=secondary emulsion, 8=polymer II, and 9=tertiary emulsion


Fig. S4. Microencapsulation by polymerization: a) interfacial, where: $1=$ aqueous solution (hydrophilic phase), $2=$ monomer $B, 3=m o n o m e r ~ A$, $4=$ oil (lipophilic phase), $5=$ diffusion of monomers to the interface, and $6=$ polymerization reaction and matrix formation, and b) in situ, where $1^{\prime}=$ monomer $B, 2^{\prime}=$ monomer $A, 3^{\prime}=$ aqueous solution (hydrophilic phase), $4^{\prime}=$ oil (lipophilic phase), $5^{\prime}=$ dissolving the monomers in the continuous phase, and $6=$ polymerization reaction and matrix formation

