Supporting Information

Transition Metal-Mediated Hydrolysis of the Imine Bond in 2-Azomethine Benzothiazoles

Valentina Rep Kaulić,¹ Natalija Pantalon Juraj,²* Berislav Perić,² Zoran Štefanić,³ Srećko Kirin,² Silvana Raić-Malić¹

¹.Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia.
².Laboratory for Solid-State and Complex Compounds Chemistry, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
³Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia

Contents

1.	X-ray crystal structure determination	. 2
2.	Crystal packing	. 2
3.	¹ H and ¹³ C NMR spectra of ligands 1–3	.5
4.	IR(ATR) spectra of ligands 1–3	.8

1. X-ray crystal structure determination

Compound	3	1a	2a	2b	2c
Formula	$C_{14}H_9BrN_2OS$	$C_{22}H_{17}N_5O_5S_2Zn$	$C_{21}H_{14}CuFN_5O_4S_2$	$C_{14}H_8CuF_2O_4$	$C_{14}H_{10}CuF_2O_5$
F _w (g mol ⁻¹)	333.20	560.89	547.03	341.74	359.76
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P21/c	ΡĪ	P21/c	P21/c	P21/c
a (Å)	17.9824(3)	8.0897(7)	7.9378(2)	12.5165(5)	12.9621(1)
b (Å)	6.3691(1)	11.7385(10)	13.4701(3)	3.8555(2)	6.9497(1)
<i>c</i> (Å)	11.8792(2)	12.9843(10)	20.3168(6)	12.6338(5)	14.6724(1)
α (°)	90	98.819(7)	90	90	90
в (°)	105.743(2)	101.722(7)	99.617(3)	94.421(4)	92.061(1)
γ (°)	90	100.623(7)	90	90	90
V (ų)	1309.51(4)	1163.05(17)	2141.80(10)	607.86(5)	1320.87(2)
Ζ	4	2	4	2	4
Ζ'	1	1	1	0.5	1
D _{calc} (g cm ⁻³)	1.690	1.602	1.696	1.867	1.809
F(000)	664	572	1108	342	724
Reflections collected	5768	12137	7761	4215	6296
Independent reflections	2681	4783	4127	1252	2731
<i>R</i> init	0.0236	0.0637	0.0390	0.0338	0.0192
Reflections observed	2415	3395	3448	1194	2498
Parameters	176	325	313	97	207
$R_1 [l > 2\sigma(l)]^{[a]}$	0.0542	0.0619	0.0589	0.0743	0.0348
wR ₂ (all data) ^[b]	0.1543	0.1843	0.1661	0.2288	0.1152
Goof, S ^[c]	1.068	1.056	1.041	1.147	1.096
Maximum/minimum electron density (e Å ³)	1.516/-0.614	0.542/-0.939	0.544/-0.715	1.265/-0.612	0.476/-0.280

Table S1. Experimental data for the X-ray diffraction studies.

^[a] $R_1 = \Sigma ||F_0| - |F_c| |/\Sigma |F_0|$. ^[b] $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$. ^[c] $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n - p) \}^{1/2}$ where n is number of reflections and p is the total number of parameters refined.

2. Crystal packing

Figure S1. Crystal packing of molecules in **3**. One molecule in the asymmetric unit is given in red color.

Figure S2. Crystal packing of complexes in **1a**. One complex in the asymmetric unit is given in red color.

Figure S3. Crystal packing of complexes in **2a**. One complex in the asymmetric unit is given in red color.

Figure S4. Crystal packing of complexes in **2b**. One half of complex in the asymmetric unit is given in red color.

Figure S5. Crystal packing of molecules in **2c**. One complex in the asymmetric unit is given in red color.

Figure S6. One-dimensional hydrogen bonding motifs in **1a** (a) and **2a** (b), formed by intermolecular hydrogen bonds N1T2-HBT2···O2Nⁱ for **1a** [symmetry code for **1a**: (i) x+1, y, z] and N1T2-HBT2···O1Nⁱ for **2a** [symmetry code for **2a**: (i) -x+2, y-1/2, -z+1/2].

Figure S8. ¹³C NMR spectrum of ligand 1

Figure S10. $^{\rm 13}{\rm C}$ NMR spectrum of ligand ${\bf 2}$

Figure S12. ¹³C NMR spectrum of ligand **3**

4. IR(ATR) spectra of ligands 1–3

Figure S13. IR(ATR) spectra of ligands 1–3