Electronic Supplementary Information (ESI)

Ternary coordination compounds of Cu(II) with glycine and 2,2'-bipyridine: Synthesis, structural characterization, magnetic and biological properties

Darko Vušak,¹ Katarina Mišković Špoljarić,² Jurica Jurec,³ Dijana Žilić,³ Biserka Prugovečki^{1,*}

¹ Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia.

² Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Medical Chemistry, Biochemistry and Clinical Chemistry, J. Huttlera 4, HR-31000 Osijek, Croatia

³ Laboratory for Magnetic Resonances, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia.

*Corresponding author: biserka@chem.pmf.hr

1a·6H₂O

1b·H₂O

Figure S1. Asymmetric unit of **1a·6H₂O**, **1b** and **1b·H₂O**. Displacement ellipsoids of non-hydrogen atoms are drawn at the 50% probability level. Oxygen atoms of one disordered part of sulfate ions are shown in blue colour.

Figure S2. Overlapped complex cations of **1a·6H₂O** (light blue), **1b** (dark blue) and **1b·H₂O** (yellow and red).

Figure S3. Packing of complex anions (blue) and cations (yellow) in $1a \cdot 6H_2O$ a) in *b*-*c* plane and b) *a*-*b* plane. Blue surfaces in a) show contact surface around water molecules. Hydrogen bonds in b) are shown as cyan lines.

Figure S4. Antiproliferative effect of compounds **1a** and **1b**. Data are presented as mean (SD) of cell viability (%) obtained from three independent experiments done in triplicate. (*) statistically significant (P < 0.05) in respect to control group determined by Mann-Whitney U – test.

Compound	1a•6H₂O	1b	1b·H₂O	
Formula	$C_{24}H_{38}Cu_2N_6O_{15}S$	$C_{24}H_{28}Cu_2N_6O_{10}S$	$C_{24}H_{30}Cu_2N_6O_{11}S$	
Formula weight	809.74	719.66	737.68	
Space group	P 1	С 2/с	P 21/c	
a/Å	7.3674(3)	21.6670(12)	20.1814(9)	
b/Å	10.6440(5)	6.7922(3)	6.7748(3)	
c/Å	21.6080(8)	21.0213(11)	20.9225(8)	
α /°	85.638(3)	90	90	
β/°	87.793(3)	121.389(7)	106.977(4)	
γ/°	71.320(4)	90	90	
V/ų	1600.38(12)	2640.9(3)	2736.0(2)	
$D_{calc}/g \text{ cm}^{-3}$	1.680	1.810	1.791	
µ/mm⁻¹	1.474	1.761	1.705	
F(000)	836	1472	1512	
heta range/°	4.3–30.0	4.2–27.0	4.2–27.0	
<i>Т/</i> К	293	150	150	
Radiation wavelength	0.71073	0.71073	0.71073	
Range of <i>h</i> , <i>k</i> , <i>l</i>	-9–9, -13–14,	-27–27, -8–8,	-25–23, -8–8,	
	-28–28	-26–26	-26–26	
Reflections collected	30616	21309	31716	
Independent reflections	7685	2875	5961	
Observed reflections	6622	2489	5172	
$(l \ge 2\sigma)$				
R _{int}	0.041	0.051	0.040	
R^a , $wR^b[I \ge 2\sigma(I)]$	0.0389, 0.0992	0.0280, 0.0669	0.0316, 0.0751	
Goodness-of-fit, S ^c	1.05	1.05	1.05	
No. of parameters	521	237	453	
$\Delta ho_{ m min}$, $\Delta ho_{ m max}$ (e Å ⁻³)	-0.89, 0.61	-0.27, 0.40	-0.57, 0.40	
CCDC no.	2217106	2217105	2217107	
	1			

Table S1. Crystallographic data for coordination compounds $1a{\cdot}6H_2O,\,1b$ and $1b{\cdot}H_2O$

 $\overline{{}^{a}R = \Sigma ||F_{o}| - |F_{d}||/\Sigma |F_{o}|; {}^{b}wR = [\Sigma(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}; {}^{c}S = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}/(N_{obs} - N_{param})]^{1/2}$

	1a·6H₂O	1b	1b·H₂O
Cu1-011	1.9423(15)	1.9469(19)	1.9473(16)
Cu1-013	2.608(2)	2.2429(15)	2.2535(14)
Cu1-N1	1.981(2)	1.9860(19)	1.989(2)
Cu1-N11	1.9898(17)	1.9949(17)	1.9955(19)
Cu1-N110	1.9982(17)	2.017(2)	2.0140(19)
Cu2-011S	2.3589(17)	-	-
Cu2-021	1.9526(18)	-	1.9222(18)
Cu2-023	-	-	2.2809(14)
Cu2–N2	1.978(2)	-	1.998(2)
Cu2-N21	1.988(2)	-	1.998(2)
Cu2-N210	2.0069(19)	-	2.0073(19)

Table S2. Selected bond lengths (Å) and angles (°) for compounds $1a \cdot 6H_2O$, 1b and $1b \cdot H_2O$.

	D-H-A	D-H / Å	H…A / Å	D…A / Å	D−H…A /?
1a∙6H₂O	N2-H2A…O14S	0.92(3)	2.07(4)	2.930(3)	155(3)
	N2-H2B····O13Sª	0.85(3)	2.14(3)	2.925(3)	154(3)
	O1W-H1W2…O14S ^b	0.85(4)	2.40(5)	3.077(3)	138(4)
	013-H13A…013S	0.85(3)	1.92(3)	2.736(3)	164(3)
	O6W-H6W1…O11Sª	0.85(3)	2.04(3)	2.876(3)	167(3)
1b	N1-H1A…O12S	0.84(3)	2.17(3)	3.002(4)	175(3)
	N1-H1A…O12S ^c	0.84(3)	1.97(3)	2.752(4)	154(3)
	N1-H1B…O11S ^d	0.88(3)	2.14(3)	2.956(4)	154(3)
	N1-H1B…O13S ^d	0.88(3)	2.00(3)	2.868(4)	168(3)
	013-H13A…011°	0.83(3)	2.05(3)	2.856(3)	163(3)
	O13-H13B…O11S	0.829(18)	2.09(3)	2.807(4)	145(3)
	013-H13B…014S ^f	0.829(18)	1.967(16)	2.737(4)	154(3)
1b∙H₂O	N1-H1A…O12S ^g	0.87(3)	2.10(3)	2.958(3)	170(3)
	N1-H1A…O12S ^g	0.89(3)	2.01(3)	2.890(3)	170(2)
	N1-H1A…O12S ^h	0.84(3)	2.14(3)	2.947(3)	159(3)
	N1-H1A…O12S ⁱ	0.87(3)	2.03(3)	2.899(3)	173(2)
	O1W-H1W1…O14S ^g	0.84(2)	2.05(2)	2.868(3)	164(3)

Table S3. The geometry of selected hydrogen bonds for compounds $1a \cdot 6H_2O$, 1b and $1b \cdot H_2O$.

^a-1+x,y,z; ^b1+x,y,z; ^c-x,y,1/2-z; ^dx,1+y,z; ^e-x,-y,1-z; ^f-x,y,1/2-z; ^gx,-1+y,-1+z; ^hx,1/2-y,-1/2+z; ⁱx,3/2-y,-1/2+z