THE LONELY RUNNER PROBLEM FOR MANY RUNNERS

Artūras Dubickas
Vilnius University, Lithuania

Abstract

The lonely runner conjecture asserts that for any positive integer n and any positive numbers $v_{1}<\cdots<v_{n}$ there exists a positive number t such that $\left\|v_{i} t\right\| \geqslant 1 /(n+1)$ for every $i=1, \ldots, n$. We verify this conjecture for $n \geqslant 16342$ under assumption that the speeds of the runners satisfy $\frac{v_{j+1}}{v_{j}} \geqslant 1+\frac{33 \log n}{n}$ for $j=1, \ldots, n-1$.

1. Introduction

Let n be a positive integer, and let $v_{1}<v_{2}<\cdots<v_{n}$ be n positive real numbers. The Lonely Runner Conjecture asserts that there is a positive number t such that

$$
\begin{equation*}
\left\|v_{i} t\right\| \geqslant \frac{1}{n+1} \tag{1.1}
\end{equation*}
$$

for every $i=1,2, \ldots, n$. Throughout $\|y\|$ stands for the distance between a real number y and the nearest integer to y. Note that inequality (1.1) is optimal if, for instance, $v_{i}=v i$ for each $i=1, \ldots, n$, where $v>0$ is a fixed real number (see, e.g., [6]). For some n there are also other values of v_{i} 's when equality in (1.1) is attained (see [12]).

The conjecture originally comes from the paper of Wills ([17]), where it is stated for integer v_{i} 's. Independently, this problem was considered by Cusick ([7]). The name of the lonely runner conjecture comes from the following beautiful interpretation of the problem due to Goddyn ([5]). Suppose k runners having distinct constant speeds start at a common point and run laps on a circular track with circumference 1. Then for any given runner there is a time at which that runner is at least $1 / k$ (along the track) away from every

[^0]other runner. Taking $k=n+1$ and assuming that the speeds of the runners are $u_{0}<u_{1}<\cdots<u_{n}$, we see that at the time $t>0$ the runner with speed, say, u_{0} is at distance $\geqslant 1 /(n+1)$ from all other runners if and only if (1.1) holds for $v_{i}=u_{i}-u_{0}, i=1, \ldots, n$.

It seems that the lonely runner conjecture is very deep in general. It is known that it has some useful applications to so-called view-obstruction problems, flows in regular matroids, chromatic numbers for distance graphs, etc. ([5,7,8,13]). The problem has been settled for $n=2,3$ ([4]), $n=4$ (first in [8] and then a simpler proof was found in [5]), $n=5$ ([6], a simpler proof in [15]). Recently, Barajas and Serra ([2]) proved the conjecture for $n=6$. For each $n \geqslant 7$ the lonely runner conjecture is still open.

On the other hand, there are some conditions on the speeds of the runners $v_{1}<\cdots<v_{n}$ under which the lonely runner conjecture holds. If, for example,

$$
\begin{equation*}
v_{n} / v_{1} \leqslant n \tag{1.2}
\end{equation*}
$$

then taking $t_{0}=1 /(n+1) v_{1}$ it is easy to see that the numbers $v_{i} t_{0}=v_{i} /(n+$ 1) $v_{1}, i=1, \ldots, n$, all lie in the interval $[1 /(n+1), n /(n+1)]$, so (1.1) holds.

Recently, Pandey ([14]) showed that the condition

$$
\begin{equation*}
\frac{v_{j+1}}{v_{j}} \geqslant \frac{2(n+1)}{n-1} \tag{1.3}
\end{equation*}
$$

for each $j=1, \ldots, n-1$ implies (1.1). This inequality (in a slightly different form) was also obtained by Ruzsa, Tuza and Voigt ([16]), and then the constant $2(n+1) /(n-1)$ was improved to 2 in [3]. Using the same method of nested intervals as in [14] one can easily prove (1.1) under condition

$$
\begin{equation*}
\frac{v_{j+1}}{v_{j}} \geqslant \frac{2 n}{n-1} \tag{1.4}
\end{equation*}
$$

for $j=1, \ldots, n-1$ which is slightly weaker than (1.3) (see the beginning of Section 2).

In this note we prove the following:
THEOREM 1.1. Let $n \geqslant 32$, and let $v_{1}<v_{2}<\cdots<v_{n}$ be positive real numbers satisfying

$$
v_{j+[(n+1) / 12 e]} \geqslant(n+1) v_{j}
$$

for each $j=1,2, \ldots, n-[(n+1) / 12 e]$. Then there is a positive number t such that $\left\|v_{i} t\right\|>1 /(n+1)$ for each $i=1,2, \ldots, n$.

Here and below, $[y]$ stands for the integral part of a real number y. Theorem 1.1 implies the following improvement of the conditions (1.3), (1.4) under which (1.1) holds:

Corollary 1.2. Suppose that κ is a constant strictly greater than $8 e=$ $21.74625 \ldots$. Then there is a positive integer $n(\kappa)$ such that for each integer
$n \geqslant n(\kappa)$ and each collection of n positive numbers $v_{1}<v_{2}<\cdots<v_{n}$ satisfying

$$
\begin{equation*}
\frac{v_{j+1}}{v_{j}} \geqslant 1+\frac{\kappa \log n}{n} \tag{1.5}
\end{equation*}
$$

for every $j=1,2, \ldots, n-1$ there is a positive number t such that

$$
\begin{equation*}
\left\|v_{i} t\right\|>1 /(n+1) \tag{1.6}
\end{equation*}
$$

for every $i=1,2, \ldots, n$. In particular, for $\kappa=33$, one can take $n(33)=$ 16342.

Note that the condition

$$
\frac{v_{j+1}}{v_{j}} \geqslant 1+\frac{22 \log n}{n}
$$

$j=1, \ldots, n-1$, of Corollary 1.2 with $\kappa=22>8 e$ yields $v_{n} / v_{1} \geqslant$ $\left(1+\frac{22 \log n}{n}\right)^{n-1}$. Here, the right hand side is approximately n^{22} for large n. Comparing with (1.2) we see that there is still a polynomial gap between n and n^{22} for the bounds on v_{n} / v_{1} for which the lonely runner conjecture is not verified. At least this gap is smaller than a corresponding exponential gap between n and (roughly) 2^{n-1} which comes from (1.3) and (1.4).

We remark that, by Lemma 6 in [10], for any positive numbers $v_{1}<\cdots<$ v_{n} and any $\varepsilon>0$ and $T>0$ there is an interval $I=\left[u_{0}, u_{0}+\varepsilon / 2 v_{n}\right]$, where $u_{0}>T$, such that

$$
\left\|v_{i} t\right\|<\varepsilon
$$

for each $t \in I$ and each $i=1, \ldots, n$. This shows that all the runners can be arbitrarily close to their starting position at arbitrarily large time t. The referee pointed out that this problem is somewhat related to Bogolyubov's theorem on Bohr neighborhoods and, despite some similarity to the lonely runner, has a different nature.

We shall derive Theorem 1.1 from Lemma 2.1 below. Since the proof of the lemma is based on a so-called Lovász local lemma (see [1] and [11]), the Lovász lemma is implicitly present in the proofs below.

2. Proofs

We first prove that (1.4) implies (1.1). Indeed, setting $I_{1}:=[1 /(n+$ 1) $\left.v_{1}, n /(n+1) v_{1}\right]$ we see that $\left\|v_{1} t\right\| \geqslant 1 /(n+1)$ for each $t \in I_{1}$. Put $k_{1}:=0$. We claim that there is a sequence of nested intervals $I_{1} \supseteq \cdots \supseteq I_{n}$ of the form $I_{i}:=\left[\left(k_{i}+1 /(n+1)\right) / v_{i},\left(k_{i}+n /(n+1)\right) / v_{i}\right]$ with integer k_{i} for $i=1, \ldots, n$. Then $\left\|v_{i} t\right\| \geqslant 1 /(n+1)$ for each $i=1, \ldots, n$. The proof is by induction. Assume that we have such sequence of nested intervals $I_{1} \supseteq \cdots \supseteq I_{j}$, where $1 \leqslant j \leqslant n-1$. Note that the interval

$$
\left[\frac{v_{j+1} k_{j}}{v_{j}}+\frac{v_{j+1} / v_{j}-1}{n+1}, \frac{v_{j+1} k_{j}}{v_{j}}+\frac{n\left(v_{j+1} / v_{j}-1\right)}{n+1}\right]
$$

contains a positive integer, say, k_{j+1}, because the length of this interval is $\geqslant 1$, by (1.4). From

$$
\frac{v_{j+1} k_{j}}{v_{j}}+\frac{v_{j+1} / v_{j}-1}{n+1} \leqslant k_{j+1} \leqslant \frac{v_{j+1} k_{j}}{v_{j}}+\frac{n\left(v_{j+1} / v_{j}-1\right)}{n+1}
$$

we deduce that $I_{j+1}:=\left[\left(k_{j+1}+1 /(n+1)\right) / v_{j+1},\left(k_{j+1}+n /(n+1)\right) / v_{j+1}\right] \subseteq I_{j}$. This completes the induction step and so proves that (1.4) implies (1.1).

The next lemma is Theorem 1.1 with dimension $m=1$ from [9].
Lemma 2.1. Let $\left(\xi_{k}\right)_{k=1}^{\infty}$ be a sequence of real numbers. If h is a positive integer, $c(h)$ is a real number greater than $4 e h$ and $\left(t_{k}\right)_{k=1}^{\infty}$ is a sequence of positive numbers satisfying $t_{k+h} \geqslant c(h) t_{k}$ for each integer $k \geqslant 1$ then there is a real number x such that

$$
\left\|t_{k} x-\xi_{k}\right\|>\frac{1}{8 e h}-\frac{1}{2 c(h)}
$$

for every $k \geqslant 1$.
Take $\xi_{k}:=0$ for each $k \geqslant 1$. Put $t_{k}:=v_{k}$ for $k=1, \ldots, n$ and, say, $t_{k}:=v_{n} c(h)^{k-n}$ for $k \geqslant n+1$. By Lemma 2.1, there is a real number x such that

$$
\begin{equation*}
\left\|v_{k} x\right\|>\frac{1}{8 e h}-\frac{1}{2 c(h)} \tag{2.1}
\end{equation*}
$$

for $k=1, \ldots, n$. Since $\|y\|=\|-y\|$, the same inequality holds for $t:=|x|>0$ instead of x. Obviously, $x \neq 0$, so $t>0$.

Put $h:=[(n+1) / 12 e]$ and $c(h):=n+1$. Note that $h \geqslant 1$, because $n \geqslant 32$. Since $e \notin \mathbb{Q}$, we have $h<(n+1) / 12 e$. Thus the right hand side of (2.1) is
$\frac{1}{8 e h}-\frac{1}{2 c(h)}=\frac{1}{8 e[(n+1) / 12 e]}-\frac{1}{2(n+1)}>\frac{12 e}{8 e(n+1)}-\frac{1}{2(n+1)}=\frac{1}{n+1}$.
Therefore, the inequality $\left\|v_{i} t\right\|>1 /(n+1)$ holds for $i=1, \ldots, n$ provided that $v_{i+h} \geqslant(n+1) v_{i}$ for $i=1, \ldots, n-h$. This is exactly the condition of Theorem 1.1. The proof of the theorem is completed.

We first prove that one can take $n(33)=16342$ in Corollary 1.2. Assume that inequality (1.5) holds with $\kappa=33$. To apply Theorem 1.1 we will check with Maple that

$$
\left(1+\frac{33 \log n}{n}\right)^{h}=\left(1+\frac{33 \log n}{n}\right)^{[(n+1) / 12 e]}>n+1
$$

for each integer $n \geqslant 16342$. Indeed, the function

$$
g(z):=\left[\frac{z+1}{12 e}\right] \log \left(1+\frac{33 \log z}{z}\right)-\log (z+1)
$$

is positive for $z \geqslant 16342$ except for two intervals J_{1} and J_{2} such that $J_{1} \subset(16373,16374)$ and $J_{2} \subset(16406,16407)$. At the points $z=$
$16373,16374,16406,16407$ the function $g(z)$ is positive. Thus $g(n)>0$ for each integer $n \geqslant 16342$.

For the proof of Corollary 1.2 we assume that (1.5) holds with some $\kappa>8 e$. We shall derive inequality (1.6) directly from Lemma 2.1. Set $\epsilon:=$ $(k-8 e) /(4 e+1)$. Then $\epsilon>0$ satisfies

$$
\begin{equation*}
8 e(1+\epsilon / 2)=\kappa-\epsilon . \tag{2.2}
\end{equation*}
$$

This time, we select $h:=[(n+1) /(\kappa-\epsilon)]$ and $c(h):=[(n+1) / \epsilon]+1$. Then, by (2.2), the right hand side of (2.1) is

$$
\begin{aligned}
\frac{1}{8 e h}-\frac{1}{2 c(h)} & =\frac{1}{8 e[(n+1) /(\kappa-\epsilon)]}-\frac{1}{2([(n+1) / \epsilon]+1)} \\
& >\frac{\kappa-\epsilon}{8 e(n+1)}-\frac{\epsilon}{2(n+1)}=\frac{1}{n+1} .
\end{aligned}
$$

Hence, by Lemma 2.1, inequality (1.6) holds for every $i=1, \ldots, n$ and some $t>0$ provided that $v_{i+h} \geqslant([(n+1) / \epsilon]+1) v_{i}$ for each $i=1, \ldots, n-h$. Note that (1.5) implies $v_{i+h} \geqslant\left(1+\frac{\kappa \log n}{n}\right)^{h} v_{i}$ for $i=1, \ldots, n-h$. Since $h \geqslant 1$ for $n \geqslant \kappa$, it remains to prove the inequality

$$
\begin{equation*}
\left(1+\frac{\kappa \log n}{n}\right)^{[(n+1) /(\kappa-\epsilon)]} \geqslant[(n+1) / \epsilon]+1 \tag{2.3}
\end{equation*}
$$

for each sufficiently large n.
It is clear that $\kappa /(\kappa-\epsilon)>1+\epsilon / \kappa$. Thus there is a positive integer $n_{1}=$ $n_{1}(\epsilon, \kappa)=n_{1}(\kappa)$ such that the left hand side of (2.3) is greater than $n^{1+\epsilon / \kappa}$ for $n \geqslant n_{1}$. On the other hand, there is a positive integer $n_{2}=n_{2}(\epsilon, \kappa)=n_{2}(\kappa)$ such that the right hand side of (2.3) is at most $2 n / \varepsilon<n^{1+\epsilon / \kappa}$ for $n \geqslant n_{2}$. Thus (2.3) holds for each $n \geqslant \max \left(n_{1}(\kappa), n_{2}(\kappa)\right)$. This completes the proof of the corollary.

Acknowledgements.

I thank the referee who quickly wrote a detailed report containing some useful information.

References

[1] N. Alon and J. Spencer, The probabilistic method, Wiley-Interscience, New York, 2000, 2nd ed.
[2] J. Barajas and O. Serra, The lonely runner with seven runners, Electron. J. Combin. 15 (2008), R48, 18 pp.
[3] J. Barajas and O. Serra, On the chromatic number of circulant graphs, Discrete Math. 309 (2009), 5687-5696.
[4] U. Betke and J.M. Wills, Untere Schranken für zwei diophantische ApproximationsFunktionen, Monatsh. Math. 76 (1972), 214-217.
[5] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebő and M. Tarsi, Flows, view obstructions and the lonely runner, J. Combin. Theory Ser. B 72 (1998), 1-9.
[6] T. Bohman, R. Holzman and D. Kleitman, Six lonely runners, Electron. J. Combin. 8(2) (2001), R3, 49 pp.
[7] T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A 16 (1974), 1-11.
[8] T. W. Cusick and C. Pomerance, View-obstruction problems III, J. Number Theory 19 (1984), 131-139.
[9] A. Dubickas, An approximation by lacunary sequence of vectors, Combin. Probab. Comput. 17 (2008), 339-345.
[10] A. Dubickas, An approximation property of lacunary sequences, Israel J. Math. $\mathbf{1 7 0}$ (2009), 95-111.
[11] P. Erdős and L. Lovász, Problems and results of 3-chromatic hypergraphs and some related questions, in: A. Hajnal et al., eds. Infinite and finite sets (dedic. to P. Erdős on his 60th birthday), Vol. II. North-Holland, Amsterdam, 1975, pp. 609-627.
[12] L. Goddyn and E. B. Wong, Tight instances of the lonely runner, Integers 6 (2006), \#A38, 14 pp.
[13] D. D. F. Liu, From rainbow to the lonely runner: a survey on coloring parameters of distance graphs, Taiwanese J. Math. 12 (2008), 851-871.
[14] R. K. Pandey, A note on the lonely runner conjecture, J. Integer Seq. 12 (2009), Article 09.4.6, 4 pp.
[15] J. Renault, View-obstruction: a shorter proof for 6 lonely runners, Discrete Math. 287 (2004), 93-101.
[16] I. Ruzsa, Zs. Tuza and M. Voigt, Distance graphs with finite chromatic number, J. Combin. Theory Ser. B 85 (2002), 181-187.
[17] J. M. Wills, Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen, Monatsh. Math. 71 (1967), 263-269.
A. Dubickas

Department of Mathematics and Informatics
Vilnius University
Naugarduko 24, Vilnius LT-03225
Lithuania
E-mail: arturas.dubickas@mif.vu.lt
Received: 3.12.2009.
Revised: 12.3.2010.

[^0]: 2010 Mathematics Subject Classification. 11J13, 11J25, 11J71.
 Key words and phrases. Lonely runner conjecture, Diophantine approximation, Lovász local lemma.

